Page Description Equation
976
980
double integral. $R$ is a bounded region, not necessarily rectangular. \[ \begin{multline*} \iint_{R} f\left(x,y\right)\,dA\\ =\iint_{R} f\left(x,y\right)\dx\dy\\ =\lim\limits_{\Delta A\rightarrow0} \sum\limits_{k=1}^{n} f\left(x_k,y_k\right)\Delta A_k \end{multline*} \]
976 constant multiple rule for double integrals \[ \begin{multline*} \iint_{R} k f\left(x,y\right)\,dA\\ =k\iint_{R} f\left(x,y\right)\,dA \end{multline*} \]
976 sum and difference rule for double integrals \[ \begin{multline*} \iint_{R}\left(f\left(x,y\right) \pm g\left(x,y\right)\right)\,dA\\ =\iint_{R} f\left(x,y\right)\,dA\\ \pm\iint_{R}g\left(x,y\right)\,dA \end{multline*} \]
976 domination for double integrals \[ \iint_{R} f\left(x,y\right)dA\geq0\\ \text{if}\\ f\left(x,y\right)\geq0 \text{ on R} \]
976 domination for double integrals \[ \iint_{R} f\left(x,y\right)\,dA \geq\iint_{R} g\left(x,y\right)\,dA\\ \text{if}\\ f\left(x,y\right) \geq g\left(x,y\right) \text{ on R} \]
976 additivity for double integrals. Holds if $R=R_1\cup R_2$ and $R_1\cap R_2=\emptyset.$ \[ \begin{multline*} \iint_{R} f\left(x,y\right)\,dA\\ =\iint_{R_1} f\left(x,y\right)\,dA\\ +\iint_{R_2} f\left(x,y\right)\,dA \end{multline*} \]
977 volume between $R$ and surface $z=f\left(x,y\right).$ $f$ must be positive over the region $R.$ \[ V=\iint_{R} f\left(x,y\right)\,dA \]
978 Fubini's theorem. If $f$ is continuous throughout the rectangular region $R:a\le x\le b,c\le y\le d.$ \[ \begin{multline*} \iint\limits_{R} f\left(x,y\right)\,dA\\ =\int\limits_{c}^{d}\int\limits_{a}^{b}f\left(x,y\right)\dx\dy\\ =\int\limits_{a}^{b}\int\limits_{c}^{d}f\left(x,y\right)\dy\dx \end{multline*} \]
981 Fubini's theorem (stronger form part 1). If $f$ is continuous throughout the region $R:a\le x\le b,g_1\left(x\right)\le y\le g_2\left(x\right)$ with $g_1$ and $g_2$ continuous on $[a, b].$ \[ \begin{multline*} \iint\limits_{R} f\left(x,y\right)\,dA\\ =\int\limits_{c}^{d} \int\limits_{h_1\left(y\right)}^{h_2\left(y\right)} f\left(x,y\right)\dx\dy \end{multline*} \]
981 Fubini's theorem (stronger form, part 2). If $f$ is continuous throughout the region $R:h_1\left(y\right)\le x\le h_2\left(y\right),c\le y\le d$ with $h_1$ and $h_2$ continuous on $[c, d].$ \[ \begin{multline*} \iint\limits_{R} f\left(x,y\right)\,dA\\ =\int\limits_{a}^{b} \int\limits_{g_1\left(x\right)}^{g_2\left(x\right)} f\left(x,y\right)\dy\dx \end{multline*} \]
987 area of a closed, bounded plane region $R.$ \[ A=\iint_{R}\,dA \]
989 average value of $f$ over region $R$ of area $A$ in $xy$-plane. \[ \text{av}\left(f\right) =\frac{1}{A}\iint_{R} f\left(x,y\right)\,dA \]
991
992
mass, discrete or continuous mass distribution \[ M=\sum m_k, M=\delta(x,y)\,dA \]
991
992
first moment about the $x$-axis, discrete or continuous mass distribution in the $xy$-plane \[ M_x=\sum{m_ky_k}, M_x=y\,\delta(x,y)\,dA \]
991
992
first moment about the y-axis, discrete or continuous mass distribution in the $xy$-plane \[ M_y=\sum{m_kx_k}, M_y=x\,\delta(x,y)\,dA \]
992 center of mass, discrete or continuous mass distribution in the $xy$-plane \[ \mathrm{cm} =(\overline{x},\overline{y}) =\left(\frac{M_y}{M},\frac{M_x}{M}\right) \]
995 second moment (moment of inertia) about the $x$-axis \[ I_x=y^2\delta(x,y)\,dA \]
995 second moment (moment of inertia) about the $y$-axis \[ I_y=x^2\delta(x,y)\,dA \]
995 second moment (moment of inertia) about the origin ($z$-axis). Also known as polar moment. \[ \begin{multline*} I=I_z =I_x+I_y\\ =r^2\delta(x,y)\,dA\\ =x^2+y^2\delta(x,y)\,dA \end{multline*} \]
994 moment of inertia. $r=$ distance of the mass element $dm$ to the axis of rotation \[ I=\int{r^2\,dm} \]
994 kinetic energy of a rotating object. \[ KE=\frac{1}{2}I\omega^2 \]
995 perpendicular axis theorem \[ I=I_z=I_x+I_y \]
995 radii of gyration \[ R_x=\sqrt{\frac{I_x}{M}}\\ R_y=\sqrt{\frac{I_y}{M}}\\ R_z=\sqrt{\frac{I_z}{M}}\\ I_x=MR_x^2\\ I_y=MR_y^2\\ I_z=MR_z^2 \]
1001 double integral of $f$ over $R$ in polar coordinates. \[ \begin{multline*} \iint_{R} f\left(r,\theta\right)\,dA\\ =\lim\limits_{n\rightarrow\infty} \sum\limits_{k=1}^{n} f\left(r_k,\theta_k\right)\Delta A_k \end{multline*} \]
1002 Fubini's theorem for polar coordinates \[ \begin{multline*} \iint\limits_{R} f\left(r,\theta\right)\,dA\\ =\int\limits_{\theta=\alpha}^{\theta=\beta} \int\limits_{r=g_1\left(\theta\right)}^{r=g_2\left(\theta\right)} f\left(r,\theta\right)r\dr\,d\theta \end{multline*} \]
1003 area in polar coordinates \[ A=\iint_{R} r\dr d\theta \]
1003 procedure for changing Cartestion integrals to polar \[ \begin{multline*} \iint_{R} f\left(x,y\right)\dx\dy\\ =\iint_{G} f \left( r\cos{\theta}, r\sin{\theta} \right) r\dr\,d\theta \end{multline*} \]
1007 triple integral of $F$ over $D,$ a closed bounded region in space \[ \begin{multline*} \iiint_{D} F\left(x,y,z\right)\,dV\\ =\lim\sum\limits_{k=1}^{n} F\left(x_k,y_k,z_k\right) \Delta V_k \end{multline*} \]
1008 constant multiple rule for triple integrals \[ \iiint_{D} kF\,dV=k\iiint_{D} F\,dV \]
1008 sum and difference rules for triple integrals \[ \begin{multline*} \iiint_{D}\left(F\pm G\right)\,dV\\ =\iiint_{D} F\,dV\pm\iiint_{D} G\,dV \end{multline*} \]
1008 domination for triple integrals \[ \iiint_{D} F\,dV\geq0\\ \text{ if }\\ F\geq0\text{ on }D \]
1008 domination for triple integrals \[ \iiint_{D} F\,dV\geq\iiint_{D} G\,dV\\ \text{ if }\\ F\geq G\text{ on }D \]
1008 additivity for triple integrals. Holds if $D=\bigcup_{i=1}^{n}D_i$ where $D_i\cap D_j=\emptyset$ if $i\ne j.$ \[ \begin{multline*} \iiint_{D} F\,dV\\ =\iiint_{D_1} F\,dV\\ +\cdots +\iiint_{D_n} F\,dV \end{multline*} \]
1008 volume. $D$ is a closed bounded region in space \[ V=\iiint_{D}\,dV \]
1009 Fubini's theorem for triple integrals \[ \begin{multline*} \iiint_{D} F\left(x,y,z\right)\,dV\\ =\int\limits_{x=a}^{x=b} \int\limits_{y=g_1\left(x\right)}^{y=g_2\left(x\right)} \int\limits_{z=f_1\left(x,y\right)}^{z=f_2\left(x,y\right)} F\left(x,y,z\right)\dz\dy\dx \end{multline*} \]
1014 average value of a function over $D,$ a closed bounded region in space \[ \text{av}\left(F\right)=\frac{1}{V}\iiint_{D} F\left(x,y,z\right)\,dV \]
1019 mass, discrete or continuous mass distribution \[ M=\iiint_{D}\delta\left(x,y,z\right)\,dV \]
1019 first moment about the $xy$-plane, discrete or continuous mass distribution in xyz space \[ M_{xy}=\iiint_{D}z\,\delta\left(x,y,z\right)\,dV \]
1019 first moment about the $xz$-plane, discrete or continuous mass distribution in xyz space \[ M_{xz}=\iiint_{D} y\,\delta\left(x,y,z\right)\,dV \]
1019 first moment about the $yz$-plane, discrete or continuous mass distribution in $xyz$ space \[ M_{yz}=\iiint_{D} x\,\delta\left(x,y,z\right)\,dV \]
1019 center of mass, discrete or continuous mass distribution in $xyz$ space \[ \mathrm{cm} =(\overline{x},\overline{y},\overline{z}) = \left( \frac{M_{yz}}{M}, \frac{M_{xz}}{M}, \frac{M_{xy}}{M} \right) \]
1019 second moment (moment of inertia) about the $x$-axis \[ I_x=(y^2+z^2)\delta(x,y,z)\,dV \]
1019 second moment (moment of inertia) about the $y$-axis \[ I_y=(x^2+z^2)\delta(x,y,z)\,dV \]
1019 second moment (moment of inertia) about the $z$-axis \[ I_z=(x^2+y^2)\delta(x,y,z)\,dV \]
1019 moments of inertia about a line Line. $r=$ distance from $(x, y, z)$ to line $L$ \[ I_L=r^2\delta\,dV \]
1019 radii of gyration \[ R_L=\sqrt{\frac{I_L}{M}},\, I_L=MR_L^2 \]
1022 parallel axis theorem \[ I_L=I_{\mathrm{cm}}+mh^2 \]
1023 Pappus's Formula \[ \vect{c} =\frac{m_1\vect{c}_1 +\cdots +m_n\vect{c}_n} {m_1+\cdots+m_n} \]
1024 cylindrical from rectangular coordinates. $r$ and $\theta$ are polar coordinates for the vertical projection of the point on the $xy$-plane. $z$ is the rectangular vertical coordinate. \[ \left(r,\theta,z\right)\\ x=r\cos{\theta}\\ y=r\sin{\theta}\\ z=z\\ r^2=x^2+y^2,\tan{\theta}=\frac{y}{x}\\ dV=\dz\,r\dr\,d\theta \]
1028 spherical from rectangular coordinates. $\rho$ is the distance from the point to the origin, $\phi$ is the angle the ray from the origin to the point makes with the $z$-axis. $\theta$ is the angle from cylindrical coordinates. \[ \left(\rho,\varphi,\theta\right),\\ 0\le\varphi\le\pi\\ x=\rho\sin{\varphi}\cos{\theta}\\ y=\rho\sin{\varphi}\sin{\theta}\\ z=\rho\cos{\varphi}\\ \rho=\sqrt{x^2+y^2+z^2}\\ dV=\rho^2sin{\varphi}\,d\rho\,d\varphi\,d\theta \]
1028 spherical from cylindrical coordinates. \[ r=\rho \sin{\varphi}\\ z=\rho\cos{\varphi}\\ \theta=\theta\\ \rho=\sqrt{r^2+z^2}\\ \]
1038 Jacobian. \[ \begin{align*} J\left(u,v\right) &=\frac{\partial\left(x,y\right)} {\partial\left(u,v\right)} = \left| \begin{matrix} \frac{\partial x}{\partial u} &\frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u} &\frac{\partial y}{\partial v} \end{matrix} \right|\\ &=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v} -\frac{\partial x}{\partial v} \frac{\partial y}{\partial u} \end{align*} \]
1037 change of variables formula, double integral \[ \begin{multline*} \iint_{D} f\left(x,y\right)\dx\dy\\ =\iint_{G} f\left(x\left(u,v\right), y\left(u,v\right)\right) \left| \frac{\partial\left(x,y\right)} {\partial\left(u,v\right)} \right| \du\dv \end{multline*} \]
1038 change of variables formula polar coordinates. The transformation is from Cartesian $r\theta$-space to Cartesian $xy$-space. \[ \begin{multline*} \iint_{D} f\left(x,y\right)\dx\dy\\ =\iint_{G} f\left(r\cos{\theta},r\sin{\theta}\right) r\dr\,d\theta \end{multline*} \]
1042 Jacobian of transformation \[ J\left(u,v,w\right) =\frac{\partial\left(x,y,z\right)} {\partial\left(u,v,w\right)} = \left| \begin{matrix} \frac{\partial x}{\partial u} &\frac{\partial x}{\partial v} &\frac{\partial x}{\partial w}\\ \frac{\partial y}{\partial u} &\frac{\partial y}{\partial v} &\frac{\partial y}{\partial w}\\ \frac{\partial z}{\partial u} &\frac{\partial z}{\partial v} &\frac{\partial z}{\partial w}\\ \end{matrix} \right| \]
1041 change of variables formula, triple integral, where \[ x=g\left(u,v,w\right)\\ y=h\left(u,v,w\right)\\ z=k\left(u,v,w\right)\\ H(u,v,w) = F(x,y,z) \] \[ \begin{multline*} \iint_{D} F\left(x,y,z\right)\dx\dy\dz\\ =\iint_{G} H\left(u,v,w\right) \left|J\left(u,v,w\right)\right| \du\dv\dw\\ \end{multline*} \]
1042 change of variables formula, cylindrical coordinates. The transformation is from Cartesian $r\theta z$-space to Cartesian $xyz$-space, where \[ x=r\cos{\theta}\\ y=r\sin{\theta}\\ z=z\\ H\left(r,\theta,z\right)=F\left(x,y,z\right)\\ J\left(r,\theta,z\right)=r \] \[ \begin{multline*} \iint_{D} F\left(x,y,z\right)\dx\dy\dz\\ =\iint_{G} H\left(r,\theta,z\right)r\dr\,d\theta\dz\\ \end{multline*}\\ \]
1042 change of variables formula, spherical coordinates. The transformation is from Cartesian $\rho\phi\theta$-space to Cartesian $xyz$-space, where \[ x=\rho\sin{\varphi}\cos{\theta}\\ y=\rho\sin{\varphi}\sin{\theta}\\ z=\rho\cos{\varphi}\\ H\left(\rho,\varphi,\theta\right) =F\left(x,y,z\right)\\ J\left(\rho,\varphi,\theta\right) =\rho^2\sin{\varphi} \] \[ \begin{multline*} \iint_{D} F\left(x,y,z\right)\dx\dy\dz\\ =\iint_{G}{ H\left(\rho,\varphi,\theta\right) \abs{\rho^2 \sin{\varphi}} \,d\rho\,d\theta\,d\varphi }\\ \end{multline*} \]

Notes

Page Notes
976 The proof of the existence and uniqueness of the limit defining a double integral of a continuous function $f$ is given in more advanced texts. The continuity of $f$ is sufficient for the existence of the double integral but not a necessary one.
983 Procedure: how to integrate double integrals.
1002 Procedure: how to integrate in polar coordinates.
1009 Procedure: how to integrate triple integrals.
1026 Procedure: how to integrate in cylindrical coordinates.
1030 Procedure: how to integrate in spherical coordinates.
978 Fubini's theorem says that double integrals over rectangles can be calculated as iterated integrals. Thus we can evaluate a double integral by integrating with respect to one variable at a time. It also says that we may calculate the double integral by integrating in either order. In particular, when we calculate a volume by slicing, we may use either planes perpendicular to the $x$-axis or the $y$-axis.
996
1020
When the density $\delta$ is constant, engineers may call the center of mass the centroid of the shape. To find a centroid, we set $\delta$ equal to 1 and proceed to find the center of mass as before.
1037 The transformation goes from $G$ to $R$ but we use them to change an integral over $R$ into an integral over $G.$