Page Description Equation
12 vector between two points $P\left(x_1, y_1\right)$ and $Q\left(x_2, y_2\right)$ \[ \vect{v} = \overrightarrow{PQ} = \left( x_2 - x_1,\ y_2 - y_1 \right) \]
15 equation of the line (point-direction form) through $\vect{r}_\vect{0}=P_0\left(x_0,y_0,z_0\right)$ parallel to $\vect{v}=\left(v_1,v_2,v_3\right), -\infty\lt t\lt\infty.$ (The equations given are equivalent forms illustrating different notations commonly used.) The last line of equations is called the standard parametrization of the line. \begin{align*} \vect{r}\left(t\right) &= \left(x_0+tv_1\right)\vect{i} + \left(y_0+tv_2\right)\vect{j} + \left(z_0+tv_3\right)\vect{k}\\ &= \vect{r_0}+t\vect{v}\\ &= \vect{r_0}+\overrightarrow{P_0 P}\\ &= 0\\ \vect{c}\left(t\right) &= \vect{x}_0+t\vect{v}\\ \vect{l}\left(t\right) &= \vect{x}_0+t\vect{v}\\ \overrightarrow{P_0 P} &= \vect{r}-\vect{r}_0\\ &= t\vect{v}\\ x &= x_0+tv_1\\ y &= y_0+tv_2\\ z &= z_0+tv_3 \end{align*}
17 equation of the line through two points (endpoints of vectors) $a$ and $b,$ ( point-point form. ) The last line of equations is the standard parametrization of the line. \begin{align*} \vect{l}\left(t\right) &= \left(1-t\right)\vect{a}+t\vect{b}\\ \vect{l}\left(t\right) &= \vect{a}+t\left(\vect{b}-\vect{a}\right)\\ x &= x_1+\left(x_2-x_1\right)t\\ y &= y_1+\left(y_2-y_1\right)t\\ z &= z_1+\left(z_2-z_1\right)t \end{align*}
32 Triangle Inequality
distance between points $P_1\left(x_1,y_1,z_1\right)$ and $P_2\left(x_2,y_2,z_2\right)$ \[ \left| \overrightarrow{P_1 P_2} \right| = \sqrt{ \left( x_2 - x_1 \right)^2 + \left( y_2 - y_1 \right)^2 + \left( z_2 - z_1 \right)^2 } \]
midpoint between points $P_1\left(x_1,y_1,z_1\right)$ and $P_2\left(x_2,y_2,z_2\right)$ \[ P_\mathrm{midpoint} = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2} \right) \]
polar form of a vector. $\theta$ is the angle between $\vect{v}$ and the positive $x$ (polar) axis. \[ \vect{v} = \left(\left|\vect{v}\right|\cos{\theta}, \left|\vect{v}\right|\sin{\theta}\right) \]
dot product of vectors $\vect{u}$ and $\vect{v}$ \[ \vect{u}\cdot\vect{v} = \left|\vect{u}\right|\left|\vect{v}\right|\cos{\theta} \]
angle between vectors $\vect{u}$ and $\vect{v}$ \[ \theta = \cos^{-1} \frac{\vect{u}\cdot\vect{v}} {\left|\vect{u}\right|\left|\vect{v}\right|} \]
(orthogonal) projection of $\vect{u}$ onto $\vect{v}.$ \[ \mathrm{proj}_\vect{v}\vect{u} = \left( \frac{\vect{u}\cdot\vect{v}} {\left|\vect{v}\right|^2} \right) \vect{v} = \frac{\vect{u}\cdot\vect{v}} {\vect{v}\cdot\vect{v}} \frac{\vect{v}} {\left|\vect{v}\right|} \]
scalar component of $\vect{u}$ in direction of $\vect{v}.$ $\theta$ is the angle between $\vect{u}$ and $\vect{v}$ \[ \left|\vect{u}\right|\cos{\theta} = \frac{\vect{u}\cdot\vect{v}} {\left|\vect{v}\right|} \]
not in book equation of line normal to $\vect{n},$ parallel to $\vect{v},$ and passing through point $P_0\left(x_0,y_0\right),$ $\overrightarrow{P_0P}=\vect{r}-\vect{r}_0.$ The first two equations are called the point-normal form, the next two the general form. Note that different values of $C$ with $A$ and $B$ fixed produces different lines, but that $\vect{n}$ is normal to each of them since $\vect{n}$ does not depend on $C$ but only on $A$ and $B.$ Thus, all such lines are parallel and $C$ determines the shift of the line. In particular, $D=Ax_0+By_0+Cz_0$ if and only if $P_0\left(x_0,y_0,z_0\right)$ is on the line. Note that since $\vect{v}$ is parallel to the line, then the slope of the line can be read off of $ \vect{v}:m=\left.\frac{dy}{dx}\right|=\frac{\mp A}{\pm B}.$ \begin{align*} &\vect{n}\cdot\overrightarrow{P_0P} = \vect{n}\cdot\left(\vect{r}-\vect{r}_0\right)\\ &A\left(x-x_0\right)+B\left(y-y_0\right)+C = 0\\ \end{align*} \begin{alignat*}{2} Ax+By &= C &\quad\textrm{if}\quad &C=Ax_0+By_0\\ Ax+By+C &= 0 &\quad\textrm{if}\quad &C = -\left(Ax_0 + By_0 \right)\\ \end{alignat*} \begin{align*} \vect{n} &= \left(A,B\right)\\ &= A\vect{i} + B\vect{j}\\ \vect{v} &= \pm B\vect{i}\mp A\vect{j} \end{align*}
not in book orthogonal vectors. If $\vect{v}$ and $\vect{n}$ are as given, then $\vect{v}$ is tangent to a curve at a point if and only if $\vect{n}$ is normal to the curve at that point. \begin{align*} \vect{v}&=\left(a,b\right)\\ \vect{n}&=\left(\pm b,\mp a\right) \end{align*}
not in book slope of line tangent to curve $y=f\left(x\right)$ that has a tangent vector $\vect{v}$ at $x = c.$ \begin{align*} m &= \left.\frac{dy}{dx}\right|_{x=c}=\frac{b}{a}\\ \vect{v} &= \left(a,b\right)\ \end{align*}
51 equation of plane normal to $\vect{n}$ and passing through point $P_0\left(x_0,y_0,z_0\right).$ The first two equations are called the point-normal form and the next two the general form. Note that different values of $D$ with $A,$ $B,$ $C$ fixed produces different planes, but that $\vect{n}$ is normal to each of them since $\vect{n}$ does not depend on $D$ but only on $A,$ $B,$ $C.$ Thus, all such planes are parallel and $D$ determines a shift of a plane. In particular, $D=Ax_0+By_0+Cz_0$ if and only if $P_0\left(x_0,y_0,z_0\right)$ is on the plane. \[ \begin{array}{l} \vect{n}\cdot\overrightarrow{P_0P} = 0\\ \vect{n}\cdot\left(x-x_0,y-y_0,z-z_0\right) = 0\\ A\left(x-x_0\right)+B\left(y-y_0\right)+C\left(z-z_0\right)=0\\ Ax+By+Cz=D\quad\textrm{if}\quad D=Ax_0+By_0+Cz_0\\ Ax+By+Cz+D=0\quad\textrm{if}\quad D=-\left(Ax_0+By_0+Cz_0\right)\\ \vect{n}=\left(A,B,C\right)=A\vect{i}+B\vect{j}+C\vect{k} \end{array} \]
52 two conditions for parallel vectors $\vect{n}_1$ and $\vect{n}_2.$ $\sigma$ is a real constant. \[ \begin{array}{l} \vect{n}_1 = \sigma \vect{n}_2\\ \vect{n}_1 \times \vect{n}_2 = \vect{0} \end{array} \]
53 Distance from a Point to a Plane. The distance $d$ from a point $S\left(x_0,y_0,z_0\right)$ to the plane $Ax+By+Cz+D=0$ that passes through point $P$ and is normal to $\vect{n}=A\vect{i}+B\vect{j}+C\vect{k}.$ \begin{align*} d &= \left|\overrightarrow{PS}\cdot \frac{\vect{n}} {\left|\vect{n}\right|}\right|\\ &= \frac{\left|Ax_0+By_0+Cz_0+D\right|} {\sqrt{A^2+B^2+C^2}} \end{align*}
43 cross product (vector product) \[ \begin{array}{ll} \vect{u}\times\vect{v} &= \begin{vmatrix} \vect{i} &\vect{j} &\vect{k}\\ u_1 &u_2 &u_3\\ v_1 &v_2 &v_3\\ \end{vmatrix}\\ &= (u_2v_3-u_3v_2)\vect{i} - (u_1v_3-u_3v_1)\vect{j} + (u_1v_2-u_2v_1)\vect{k}\\ &= (u_2v_3-u_3v_2)\vect{i} + (u_3v_1-u_1v_3)\vect{j} + (u_1v_2-u_2v_1)\vect{k}\\ &= (u_2v_3-u_3v_2, u_3v_1-u_1v_3, u_1v_2-u_2v_1) \end{array} \]
46 magnitude of cross product \[ \vect{u}\times\vect{v} = \left|\vect{u}\right| \left|\vect{v}\right| \left|\sin\theta\right| \]
48 area of parallelogram with base $|\vect{u}|$ and height $|\vect{v}|\sin\theta.$ \[ A=\|\vect{u}\times\vect{v}\| \]
48 area of triangle with base $|\vect{u}|$ and height $|v|\sin\theta.$ Note. Given 3 points, you can use either formula to find the area of the parallelogram or triangle they form without having to find the angle $\theta.$ \[ A={\frac 1 2}\|\vect{u}\times\vect{v}\| \]
49 triple scalar product (box product). Note that this time the determinant is not a cross product so it is not a vector but a scalar. The box product is a real number. \begin{align*} \left(\vect{u}\times\vect{v}\right)\cdot\vect{w} &= \vect{w}\cdot\left(\vect{u}\times\vect{v}\right)\\ &= \begin{vmatrix} u_1 &u_2 &u_3\\ v_1 &v_2 &v_3\\ w_1 &w_2 &w_3 \end{vmatrix} \end{align*}
49 identities involving box product \begin{align*} \left(\vect{u}\times\vect{v}\right)\cdot\vect{w} &= \vect{w}\cdot\left(\vect{u}\times\vect{v}\right)\\ &= \vect{u}\cdot\left(\vect{v}\times\vect{w}\right)\\ &= \left(\vect{v}\times\vect{w}\right)\cdot\vect{u}\\ &= \left(\vect{w}\times\vect{u}\right)\cdot\vect{v} \end{align*}
49 volume of parallelpiped \begin{align*} V &= \left| \left(\vect{u}\times\vect{v}\right) \cdot\vect{w} \right|\\ &= \mathrm{Abs} \left(\begin{vmatrix} u_1 &u_2 &u_3\\ v_1 &v_2 &v_3\\ w_1 &w_2 &w_3 \end{vmatrix}\right) \end{align*}
not in book equation of the line of intersection of two planes. If $\vect{n}_1$ and $\vect{n}_2$ are vectors normal to planes $P_1$ and $P_2$ respectively, then $\vect{n} = \vect{n}_1\times\vect{n}_2$ is the vector parallel to the line of intersection of the two planes. If $\vect{n}_1 \times \vect{n}_2 = \vect{0}$ then $P_1$ and $P_2$ are parallel. If the point $P_0\left(x_0,y_0,z_0\right)$ lies on the line then the equation of the line is as given. (See Thomas' Calculus, p. 812 for this.) \begin{align*} \vect{r}\left(t\right) &= \vect{r}_0+t\vect{v}\\ & \textrm{where} \\ \vect{v} &= \vect{n}_1\times\vect{n}_2\\ &= v_1\vect{i}+v_2\vect{j}+v_3\vect{k}\\ x &= x_0+tv_1\\ y &= y_0+tv_2\\ z &= z_0+tv_3 \end{align*}
not in book equation of the line tangent to the curve formed by the intersection of two surfaces $f\left(x,y,z\right)=0$ and $g\left(x,y,z\right)=0$ at the point $\vect{r}\left(t\right)=P_0\left(x_0,y_0,z_0\right).$ (See Thomas' Calculus, p. 922 for this.) \begin{align*} \vect{r}\left(t\right) &= \vect{r}_0+t\vect{v}\\ & \textrm{where}\\ \vect{v} &= \nabla f\times\nabla g\\ x &= x_0+tv_1\\ y &= y_0+tv_2\\ z &= z_0+tv_3\\ \end{align*}
not in book distance from a point to a line. The distance $d$ from a point $S=\left(x_0,y_0,z_0\right)$ to the line $Ax+By+C=0$ that passes through point $P$ parallel to $v.$ \[ d = \frac{\left|\overrightarrow{PS}\times\vect{v}\right|} {\left|\vect{v}\right|} = \frac{\left|Ax_0+By_0+C\right|} {\sqrt{A^2+B^2}} \]
66 polar coordinates \[ \begin{array}{l} x=r\cos{\theta}\\ y=r\sin{\theta} \end{array} \]
66 cylindrical coordinates \[ \begin{array}{l} x=r\cos{\theta}\\ y=r\sin{\theta}\\ z=z \end{array} \]
69 spherical coordinates \begin{align*} x&=\rho\sin{\varphi}\cos{\theta}\\ y&=\rho\sin{\varphi}\sin{\theta}\\ z&=\rho\cos{\varphi}\\ &\textrm{where}\\ \rho &\geq 0\\ 0 &\le \theta\le 2\pi\\ 0 &\le \varphi\le\pi \end{align*}
distance formula in $n\textrm{-space}$
Angle between Intersecting Planes. If $\vect{n}_1$ and $\vect{n}_2$ are vectors normal to planes $P1$ and $P2$ respectively, then the angle between the planes is given. \[ \theta = {cos}^{-1} \frac{\vect{n}_1\cdot\vect{n}_2} {\left|\vect{n}_1\right|\left|\vect{n}_2\right|} \]