Page Description Equation
202 standard normal random variable. Use this form when $X\lt0.$ \[ \Phi \left( -x \right) = 1- \Phi \left( x \right),\quad x \lt 0 \]
202 normal random variable \[ \begin{array}{ll} F_X(x) &= Pr \left\{ X \leq x \right\} \\ &= Pr \left\{ \frac{X - \mu}{\sigma} \leq \frac{x - \mu}{\sigma} \right\} \\ &= \Phi \left( \frac{x - \mu}{\sigma} \right) \end{array} \]
187 The probability density function $f$ of a random variable $X$ is the function that satisfies the three given conditions.
  1. $ f \left( x \right) \geq 0 $
  2. $ \int_{-\infty}^{\infty} f \left( x \right) dx = 1 $
  3. $ \Pr{ \left\{ a \le X \le b \right \} } = \int_{a}^{b} f \left( x \right) dx $
190 The density function is the derivative of the distribution function, and the distribution function is the integral of the density function. \[ \eqalign{ F \left( b \right) &= \Pr{ \left\{ X \le b \right\} }\\ &= \Pr{ \left\{ -\infty \lt X \le b \right\} }\\ &= \int_{-\infty}^{b} f \left( x \right) dx } \]
190 Expectation of a Continuous Random Variable \[ E \left[ X \right] = \int_{-\infty}^{\infty}{ x \cdot f \left( x \right)\ dx} \]
190 Expectation of a Function of a Continuous Random Variable \[ E \left[ g \left( X \right) \right] = \int_{-\infty}^{\infty} g \left( x \right) f \left( x \right) dx \]
195 Variance for Continuous Random Variable \[ \eqalign{ \Var \left( X \right) = &\int_{-\infty}^{\infty}{x^2 \cdot f \left( x \right)\ dx}\\ &- \left[ \int_{-\infty}^{\infty}{x \cdot f \left( x \right)\ dx} \right]^2 } \]
195 Uniform Random Variable
196 density function of a uniform random variable from a to b \[ f \left( x \right) = \left\{ \begin{array}{ll} \frac{1}{b-a} &a \lt x \lt b\\ &\mathrm{else} \end{array} \right. \]