|  | kinetic energy | \[
                    K=\frac{1}{2}mv^2
                \] | 
         
            |  | joule. 
                
                SI unit for work and energy | \[
                    1\,\mathrm{N\cdot m}=1\,\mathrm{J}
                \] | 
         
            | 200 | watt.
                
                SI unit for power | \[
                    1\,\mathrm{W}=1\,\frac{\mathrm{J}}{s}
                \] | 
         
            | 200 | horsepower. 
                
                Unit of power in British engineering system | \[
                    1\,\mathrm{hp}=746\,\mathrm{W}
                \] | 
         
            | 200 | kilowatt hour.
                
                Common unit of energy | \[
                    1\,\mathrm{kWh}=3.60\,\mathrm{MJ}
                \] | 
         
            |  | work done by constant force | \[
                    W=\vect{F}\cdot\vect{d}=Fd\cos{\theta}
                \] | 
         
            |  | work done by constant force in direction of displacement | \[
                    W=Fd,\text{ where } \theta=0
                \] | 
         
            |  | work done by constant force in direction opposite displacement | \[
                    W=-Fd,\text{ where } \theta=180^\circ
                \] | 
         
            |  | work done by force that varies with position. 
                
                E.g. conservative forces like gravity or a spring. 
                Note, $F_x$ is the component of $\vect{F}$ along the 
                $x\text{-axis}$ and the force at position $x$??? | \[
                    W_x=\int_{x_i}^{x_f}{F_x\,dx},\ \mathrm{where}\ F_x=F\cos{\theta}
                \] | 
         
            |  | work-kinetic energy theorem | \[
                    \begin{align*}
                        W_x &=\int_{x_i}^{x_f}{F_x\,dx}\\
                            &=\int_{x_i}^{x_f}mv\,dv\\
                            &=\frac{1}{2}mv_f^2-\frac{1}{2}mv_i^2\\
                            &=T_f-T_i\\
                            &=\Delta T
                    \end{align*}
                \] | 
         
            |  | work done by friction | \[
                    W_k=-f_kd
                \] | 
         
            |  | net work with friction and other forces | \[
                    \sum W=W_{\mathrm{other}}-f_kd
                \] | 
         
            |  | work done by a spring | \[
                    \begin{align*}
                        W_s &=\int_{x_i}^{x_f}{-kx\,dx}\\
                            &=\frac{1}{2}kx_i^2-\frac{1}{2}\ kx_f^2\\
                            &=K_i-K_f\\
                            &=-\Delta K
                    \end{align*}
                \] | 
         
            |  | work done by a force applied to a spring (pull or push) | \[
                    \begin{align*}
                        W_{\mathrm{app,s}}  &=-W_s\\
                                            &=\int_{x_i}^{x_f}kx\,dx\\
                                            &=\frac{1}{2}kx_f^2-\frac{1}{2}kx_i^2\\
                                            &=K_f-K_i\\
                                            &=\Delta K
                    \end{align*}
                \] | 
         
            |  | power | \[
                    \begin{align*}
                        \scr{P} &=\frac{dW}{dt}\\
                                &=\vect{F}\cdot\frac{d\vect{s}}{dt}\\
                                &=\vect{F}\cdot\vect{v}
                    \end{align*}
                \] |