Page Description Equation
potential energy function \[ -\frac{d\,U\left(x\right)}{dx}=F\left(x\right), \ \ \ U\left(x\right)=-\int F\left(x\right)\,dx \]
gravitational potential energy. $y=$ height above the ground, can let $C=0$ so $U_g=0$ when $y=0.$ \[ \begin{align*} U_g &=-\int mg\,dy \\ &=mgy+C \end{align*} \]
work done by gravity \[ \begin{align*} W_g &=-\int_{h_i}^{h_f}mg\,dy\\ &=mgh_i-mgh_f\\ &=U_{g_i}-U_{g_f}\\ &=-\Delta U_g \end{align*} \]
elastic potential energy \[ U_s=\frac{1}{2}kx^2 \]
work done by a conservative force \[ W_c=-\Delta U_c \]
work done by a spring \[ W_s=-\Delta U_s \]
conservation of energy for a system. Holds iff the system is isolated and contains only conservative forces, otherwise $\Delta E\neq 0.$ \[ \begin{align*} E_i &=E_f\\ K_i+U_i &=K_f+U_f\\ \Delta K &=-\Delta U\\ \Delta E &=0 \end{align*} \]
work-kinetic energy theorem when conservative and non conservative forces are present. $\sum W_c=$ net work done by conservative forces and $\sum W_{nc}=$ net work done by non-conservative forces. \[ \begin{align*} & \sum W_c+\sum W_{nc}=\sum W=\Delta K\\ & -\Delta U+\sum W_{nc}=\Delta K\\ & \sum W_{nc}=\Delta K+\Delta U=\Delta E \end{align*} \]
the kinetic energy of a system is the sum of the kinetic energies of its particles and of the forces on them (quick quiz 8.4, p. 250) \[ \begin{align*} & \sum_{\alpha}{\Delta K_\alpha}=\Delta\sum_{\alpha} K_\alpha=\Delta K\\ & \sum_{\alpha}\left(K_{\alpha_f}-K_{\alpha_i}\right)=\sum_{\alpha} K_{\alpha_f}-\sum_{\alpha} K_{\alpha_i} \end{align*} \]
the potential energy of a system is the sum of the potential energies of its particles and of the forces on them (quick quiz 8.4, p. 250) \[ \begin{align*} & \sum_{\alpha}{\Delta U_\alpha}=\Delta\sum_{\alpha} U_\alpha=\Delta U\\ & \sum_{\alpha}\left(U_{\alpha_f}-U_{\alpha_i}\right)=\sum_{\alpha} U_{\alpha_f}-\sum_{\alpha} U_{\alpha_i} \end{align*} \]
example of work-kinetic energy theorem when two conservative forces, spring force and gravitational force, and two non-conservative forces, applied force and frictional force, are present. \[ \begin{align*} & W_g+W_s+W_{\mathrm{app}}+W_k=\sum W=\Delta K\\ & mgy_i-mgy_f+\frac{1}{2}kx_i^2-\frac{1}{2}kx_f^2+W_{\mathrm{app}}-f_kd=\Delta K\\ & W_{\mathrm{app}}-f_kd=\Delta K+mgy_f-mgy_i+\frac{1}{2}kx_f^2-\frac{1}{2}kx_i^2\\ & \sum W_{nc}=\Delta K+\Delta U_g+\Delta U_s=\Delta K+\Delta U=\Delta E \end{align*} \]