|  | conversion between $\text{C}$ and $\text{K}$ | \[
                    T_\mathrm{C}=T-273.15
                \] | 
        
            |  | conversion between $\text{C}$ and $\text{F}$ | \[
                    T_\mathrm{F}=\frac{9}{5}T_\mathrm{C}+32^\circ F
                \] | 
        
            |  | proportions between $\text{K}$, $\text{C}$ and $\text{F}$. | \[
                    \Delta T_\mathrm{C}=\Delta T=\frac{5}{9}\Delta T_\mathrm{F}
                \] | 
        
            |  | average coefficient of linear expansion, 
                
                depends on material. | \[
                    \alpha=\frac{\Delta L/L_i}{\Delta T}
                \] | 
        
            |  | alphas for some common materials | Table 19.2 | 
        
            | 587 | for sufficiently small changes in $\Delta T$ 
                or for sufficiently small $\frac{\Delta L}{L_i},$
                $\alpha$ is constant. |  | 
        
            |  | $\alpha=$ average
                    coefficient of linear expansion. 
                
                Holds for small changes | \[
                    L_f-L_i=\alpha L_i\left(T_f-T_i\right)
                \] | 
        
            |  | $2\alpha=$ average
                    coefficient of area expansion | \[
                    A_f-A_i=2\alpha A_i\left(T_f-T_i\right)
                \] | 
        
            |  | $3\alpha=$ average 
                    
                    coefficient of volume expansion | \[
                    V_f-V_i=3\alpha V_i\left(T_f-T_i\right)
                \] | 
        
            |  | Ideal gas law. 
                
                $P=$ Pressure,  
                $V=$ Volume,
                $n=$ number of moles molecules, 
                $T=$ temperature,
                $R=$ universal gas constant. 
                The gas must be trapped, which is 
                to say that $n$ is constant. | \[
                    PV=nRT
                \] | 
        
            |  | universal gas constant. | \[
                    R=8.315\frac{\mathrm{J}}{\mathrm{mol\cdot K}}
                \] | 
        
            |  | Ideal gas law expressed in terms of number 
                    of molecules 
                
                instead of number of moles. 
                ($k_B$
                is Boltzmann's Constant.) | \[
                    PV=Nk_BT
                \] | 
        
            |  | Boltzmann’s Constant. | \[
                    k_B=\frac{R}{N_A}=1.38\times{10}^{-23}\frac{\mathrm{J} }{\mathrm{K}}
                \] | 
        
            |  | Boyle’s Law.
                This law is captured by the Ideal Gas Law. | \[
                    P\propto V^{-1}
                \] | 
        
            |  | Law of Charles Gay-Lussac. 
                
                This law is captured by the 
                Ideal Gas Law. | \[
                    V\propto T
                \] | 
        
            |  | pressure | \[
                    \left[P\right]=\frac{\left[F\right]}{\left[L^2\right]}=\frac{\left[F\right]}{\left[A\right]}
                \] | 
        
            |  | pressure $\times$ volume = energy | \[
                    \left[PV\right]=\left[E\right]
                \] | 
        
            |  | SI units for pressure $\times$ volume | \[
                    \left[PV\right]_{\mathrm{SI}}=\mathrm{J}=N\cdot m
                \] | 
        
            |  | pascal, pressure units | \[
                    1\ \mathrm{Pa}=1=\frac{\mathrm{N}}{\mathrm{m}^2}
                \] |