SD Derivation Rules
$`\&\text{'}$ Rules
Conjunction Introduction $(\text{&I})$
| $\mathscr{P}$ | |
| $\mathscr{Q}$ | |
| $\rhd$ | $\mathscr{P}\,\&\,\mathscr{Q}$ |
Conjunction Elimination $(\text{&E})$
| $\mathscr{P}\,\&\,\mathscr{Q}$ | |
| $\rhd$ | $\mathscr{P}$ |
| $\mathscr{P}\,\&\,\mathscr{Q}$ | |
| $\rhd$ | $\mathscr{Q}$ |
$`\,\supset\!\text{'}$ Rules
Conditional Introduction $(\supset\text{I})$
| $\mathscr{P}$ | ||
| $\mathscr{Q}$ | ||
| $\rhd$ | $\mathscr{P}\supset\mathscr{Q}$ | |
Conditional Elimination $(\supset\text{E})$
| $\mathscr{P}\supset\mathscr{Q}$ | |
| $\mathscr{P}$ | |
| $\rhd$ | $\mathscr{Q}$ |
$`\,\sim\!\text{'}$ Rules
Negation Introduction $(\sim\text{I})$
| $\mathscr{P}$ | ||
| $\mathscr{Q}$ | ||
| $\sim\mathscr{Q}$ | ||
| $\rhd$ | $\sim\mathscr{P}$ | |
Negation Elimination $(\sim\text{E})$
| $\sim\mathscr{P}$ | ||
| $\mathscr{Q}$ | ||
| $\sim\mathscr{Q}$ | ||
| $\rhd$ | $\mathscr{P}$ | |
$`\lor\text{'}$ Rules
Disjunction Introduction $(\lor\text{I})$
| $\mathscr{P}$ | |
| $\rhd$ | $\mathscr{P}\lor\mathscr{Q}$ |
| $\mathscr{Q}$ | |
| $\rhd$ | $\mathscr{Q}\lor\mathscr{P}$ |
Disjunction Elimination $(\lor\text{E})$
| $\mathscr{P}\lor\mathscr{Q}$ | ||
| $\mathscr{P}$ | ||
| $\mathscr{R}$ | ||
| $\mathscr{Q}$ | ||
| $\mathscr{R}$ | ||
| $\rhd$ | $\mathscr{R}$ | |
$`\,\equiv\!\text{'}$ Rules
Biconditional Introduction $(\equiv\text{I})$
| $\mathscr{P}$ | ||
| $\mathscr{Q}$ | ||
| $\mathscr{Q}$ | ||
| $\mathscr{P}$ | ||
| $\rhd$ | $\mathscr{P}\equiv\mathscr{Q}$ | |
Biconditional Elimination $(\equiv\text{E})$
| $\mathscr{P}\equiv\mathscr{Q}$ | |
| $\mathscr{P}$ | |
| $\rhd$ | $\mathscr{Q}$ |
| $\mathscr{P}\equiv\mathscr{Q}$ | |
| $\mathscr{Q}$ | |
| $\rhd$ | $\mathscr{P}$ |