All the Derivation Rules of SD and

Rules of Inference

Modus Tollens $(\text{MT})$

$\mathscr{P}\supset\mathscr{Q}$
$\sim\mathscr{Q}$
$\rhd$ $\sim\mathscr{P}$

Hypothetical Syllogism $(\text{HS})$

$\mathscr{P}\supset\mathscr{Q}$
$\mathscr{Q}\supset\mathscr{R}$
$\rhd$ $\mathscr{P}\supset\mathscr{R}$

Disjunctive Syllogism $(\text{DS})$

$\mathscr{P}\lor\mathscr{Q}$
$\sim\mathscr{P}$
$\rhd$ $\mathscr{Q}$
or
$\mathscr{P}\lor\mathscr{Q}$
$\sim\mathscr{Q}$
$\rhd$ $\mathscr{P}$

Rules of Replacement

Commutation $(\text{Com})$

\( \mathscr{P}\;\&\;\mathscr{Q} \;\lhd\rhd\; \mathscr{Q}\;\&\;\mathscr{P} \)
\( \mathscr{P}\lor\mathscr{Q} \;\lhd\rhd\; \mathscr{Q}\lor\mathscr{P} \)

Association $(\text{Assoc})$

\( \mathscr{P}\;\&\;(\mathscr{Q}\;\&\;\mathscr{R}) \;\lhd\rhd\; (\mathscr{P}\;\&\;\mathscr{Q})\;\&\;\mathscr{R} \)
\( \mathscr{P}\lor(\mathscr{Q}\lor\mathscr{R}) \;\lhd\rhd\; (\mathscr{P}\lor\mathscr{Q})\lor\mathscr{R} \)

Implication $(\text{Impl})$

\( \mathscr{P}\supset\mathscr{Q} \;\lhd\rhd\; \sim\mathscr{P}\lor\mathscr{Q} \)

Double Negation $(\text{DN})$

\( \mathscr{P} \;\lhd\rhd\; \sim\sim\mathscr{P} \)

De Morgan $(\text{DeM})$

\( \sim(\mathscr{P}\;\&\;\mathscr{Q}) \;\lhd\rhd\; \sim\mathscr{P}\,\lor\sim\mathscr{Q} \)
\( \sim(\mathscr{P}\lor\mathscr{Q}) \;\lhd\rhd\; \sim\mathscr{P}\;\&\;\sim\mathscr{Q} \)

Idempotence $(\text{Idem})$

\( \mathscr{P} \;\lhd\rhd\; \mathscr{P}\;\&\;\mathscr{P} \)
\( \mathscr{P} \;\lhd\rhd\; \mathscr{P}\lor\mathscr{P} \)

Transposition $(\text{Trans})$

\( \mathscr{P}\supset\mathscr{Q} \;\lhd\rhd\; \sim\mathscr{Q}\supset\,\sim\mathscr{P} \)

Exportation $(\text{Exp})$

\( \mathscr{P}\supset(\mathscr{Q}\supset\mathscr{R}) \;\lhd\rhd\; (\mathscr{P}\;\&\;\mathscr{Q})\supset\mathscr{R} \)

Distribution $(\text{Dist})$

\( \mathscr{P}\;\&\;(\mathscr{Q}\lor\mathscr{R}) \;\lhd\rhd\; (\mathscr{P}\;\&\;\mathscr{Q}) \lor (\mathscr{P}\;\&\;\mathscr{R}) \)
\( \mathscr{P}\lor(\mathscr{Q}\;\&\;\mathscr{R}) \;\lhd\rhd\; (\mathscr{P}\lor\mathscr{Q}) \;\&\; (\mathscr{P}\lor\mathscr{R}) \)

Equivalence $(\text{Equiv})$

\( \mathscr{P}\equiv\mathscr{Q} \;\lhd\rhd\; (\mathscr{P}\supset\mathscr{Q})\;\&\; (\mathscr{Q}\supset\mathscr{P}) \)
\( \mathscr{P}\equiv\mathscr{Q} \;\lhd\rhd\; (\mathscr{P}\;\&\;\mathscr{Q})\lor (\sim\mathscr{P}\;\&\;\sim\mathscr{Q}) \)