85 |
average speed
|
\[
\text{average speed}
=\frac{\text{distance traveled}}
{\text{time elapsed}}
\]
|
86 |
average rate of change,
where $h=x_2-x_1,\, h\neq 0$
|
\[
\begin{align*}
\frac{\Delta y}{\Delta x}
&=\frac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}\\
&=\frac{f\left(x_1+h\right)-f\left(x_1\right)}{h}
\end{align*}
\]
|
90 |
limit of the identity function
|
\[
\lim\limits_{x\rightarrow x_0}x=x_0
\]
|
90 |
limit of the constant function
|
\[
\lim\limits_{x\rightarrow x_0}k=k
\]
|
91 |
some functions with no limit
|
\[
\begin{align*}
U\left(x\right)
&= \left\{
\begin{matrix}
0 &x\lt 0\\
1 &x\geq0\\
\end{matrix}
\right.\\
g\left(x\right)
&= \left\{
\begin{matrix}
\frac{1}{x} &x\neq0\\
0 &x=0\\
\end{matrix}
\right.\\
f\left(x\right)
&= \left\{
\begin{matrix}
0 &x\le 0\\
\sin{\frac{1}{x}} &x\gt0\\
\end{matrix}
\right.
\end{align*}
\]
|
92 |
Formal definition of the
limit
|
\[
\lim\limits_{x\rightarrow x_0}f\left(x\right)=L\\
\text{if}\; \forall\varepsilon>0,\,
\exists\delta>0,\,\forall x\\
0\lt\abs{x-x_0}\lt\delta
\Rightarrow
\abs{f\left(x\right)-L}\lt\varepsilon
\]
|
99 |
sum difference rule for limits
|
\[
\lim\limits_{x\rightarrow c}
\left(f\left(x\right)\pm g\left(x\right)\right)
=L\pm M
\]
|
99 |
product rule for limits
|
\[
\lim\limits_{x\rightarrow c}
\left(f\left(x\right)\cdot g\left(x\right)\right)
=L\cdot M
\]
|
99 |
constant multiple rule for limits
|
\[
\lim\limits_{x\rightarrow c}
\left(k\cdot f\left(x\right)\right)
=k\cdot L
\]
|
99 |
quotient rule for limits
|
\[
\lim\limits_{x\rightarrow c}
\frac{f\left(x\right)}{g\left(x\right)}
=\frac{L}{M}
\]
|
99 |
power rule for limits,
where
$r,s\in\mathbb{Ζ},$
provided
$L^{r/s}\in\mathbb{R}$
|
\[
\lim\limits_{x\rightarrow c}
\left(f\left(x\right)\right)^{r/s}
=L^{r/s}\\
\]
|
100 |
limit of a polynomial
|
\[
\lim\limits_{x\rightarrow c}P\left(x\right)=P\left(c\right)
\]
|
100 |
limit of a rational function
|
\[
\lim\limits_{x\rightarrow c}
\frac{P\left(x\right)}
{Q\left(x\right)}
=\frac{P\left(c\right)}
{Q\left(c\right)}
\]
|
102 |
sandwich (squeeze, pinching) theorem
|
\[
\left.
\begin{matrix}
g\left(x\right)
\le f\left(x\right)
\le h\left(x\right)\\
\lim\limits_{x\rightarrow c}
g\left(x\right)
=\lim\limits_{x\rightarrow c}
h\left(x\right)
=L\\
\end{matrix}
\right\}
\Rightarrow\lim\limits_{x\rightarrow c}
f\left(x\right)
=L
\]
|
104 |
right-hand limit
|
\[
\lim\limits_{x\rightarrow a^+}f\left(x\right)=L
\]
|
104 |
left-hand limit
|
\[
\lim\limits_{x\rightarrow a^-}f\left(x\right)=M
\]
|
105 |
relation between one-sided and two-sided limits
|
\[
\lim\limits_{x\rightarrow c}f\left(x\right)
=L
\Leftrightarrow
\left\{
\begin{matrix}
\lim\limits_{x\rightarrow c^-}f\left(x\right)
=L\\
\lim\limits_{x\rightarrow c^+}f\left(x\right)=L
\end{matrix}
\right.
\]
|
106 |
theorem where $\theta$ is in radians
|
\[
\lim\limits_{\theta\rightarrow0}\frac{\sin{\theta}}{\theta}=1\\
\]
|
112 |
limit as $x$ approaches positive infinity
|
\[
\lim\limits_{x\rightarrow\infty}f\left(x\right)=L
\]
|
112 |
limit as $x$ approaches negative infinity
|
\[
\lim\limits_{x\rightarrow-\infty}f\left(x\right)=L
\]
|
113 |
sum and difference rule for limits as $x$ goes to infinity
|
\[
\lim\limits_{x\rightarrow\pm\infty}\left(f\left(x\right)\pm g\left(x\right)\right)=L\pm M
\]
|
113 |
product rule for limits as $x$ goes to infinity
|
\[
\lim\limits_{x\rightarrow\pm\infty}\left(f\left(x\right)\cdot g\left(x\right)\right)=L\cdot M
\]
|
113 |
constant multiple rule for limits as $x$ goes to infinity
|
\[
\lim\limits_{x\rightarrow\pm\infty}\left(k\cdot f\left(x\right)\right)=k\cdot L
\]
|
113 |
quotient rule for limits as $x$ goes to infinity
|
\[
\lim\limits_{x\rightarrow\pm\infty}\left(\frac{f\left(x\right)}{g\left(x\right)}\right)=\frac{L}{M}
\]
|
113 |
power rule for limits as $x$ goes to infinity
where
$r,s\in\mathbb{Ζ},$
provided
$L^{r/s}\in\mathbb{R}$
|
\[
\lim\limits_{x\rightarrow\pm\infty}
\left(f\left(x\right)\right)^{r/s}
=L^{r/s}
\]
|
115 |
The given line $x = a$ is a
vertical asymptote
or
infinite limit
of $f$.
|
\[
\left.
\begin{matrix}
\lim\limits_{x\rightarrow a^+}{f}\left(x\right)
=\pm\infty\\
\text{or}\\
\lim\limits_{x\rightarrow a^-}{f}\left(x\right)
=\pm\infty
\end{matrix}
\right\}
\Rightarrow
\begin{matrix}
\text{Vertical}\\
\text{Asymptote}
\end{matrix}
(x=a)
\]
|
115 |
The given line $y = b$ is a
horizontal asymptote
of $f$.
|
\[
\left.
\begin{matrix}
\lim\limits_{x\rightarrow\infty}{f}\left(x\right)
=b\\
\text{or}\\
\lim\limits_{x\rightarrow-\infty}{f}\left(x\right)
=b
\end{matrix}
\right\}
\Rightarrow
\begin{matrix}
\text{Horizontal}\\
\text{Asymptote}
\end{matrix}
\left(y=b\right)
\]
|
119 |
infinite limits, positive infinity as a limit
|
\[
\lim\limits_{x\rightarrow x_0}f\left(x\right)=\infty\\
\text{if }\; \forall B\gt0,\,\exists\delta\gt0,\,\forall x\\
0\lt\abs{x-x_0}\lt\delta\Rightarrow f\left(x\right)\gt B
\]
|
|
infinite limits, negative infinity as a limit
|
\[
\lim\limits_{x\rightarrow x_0}f\left(x\right)=-\infty\\
\text{if }\;\forall B\gt0,\,\exists\delta>0,\,\forall x\\
0\lt \abs{x-x_0}\lt\delta\Rightarrow f\left(x\right)\lt -B
\]
|
120 |
$g$ is a
right end behavior model
for $f$ iff the condition holds.
|
\[
\lim\limits_{x\rightarrow\infty}\frac{f\left(x\right)}{g\left(x\right)}=1
\]
|
120 |
$g$ is a
left end behavior model
for $f$ iff the condition holds.
|
\[
\lim\limits_{x\rightarrow-\infty}\frac{f\left(x\right)}{g\left(x\right)}=1
\]
|
125 |
continuity at an interior point of domain,
(both right and left continous)
|
\[
\lim\limits_{x\rightarrow c}f\left(x\right)=f\left(c\right)\\
\]
|
125 |
continuity at a left endpoint of domain,
right-continuous, continuous from the right
|
\[
\lim\limits_{x\rightarrow a^+}f\left(x\right)=f\left(a\right)
\]
|
125 |
continuity at a right endpoint of domain,
left-continuous, continuous from the left
|
\[
\lim\limits_{x\rightarrow b^-}f\left(x\right)=f\left(b\right)
\]
|
126 |
continuity test at an interior point
|
Function $f$ is continuous at a point $c$ if and only if:
-
$c\in\text{dom}f\quad (f\left(c\right) \text{ exists})$
-
$\lim\limits_{x\rightarrow c}f\left(x\right)\text{ exists }$
-
$\lim\limits_{x\rightarrow c}f\left(x\right)=f\left(c\right)$
|
129 |
A function has the
Intermediate Value Property
if it never takes on two values without
taking on all values in between. In symbols,
it has this property if the condition holds:
|
\[
\forall y_0,\,\exists c\\
f\left(a\right)\le y_0\le f\left(b\right)
\Rightarrow
\left\{
\begin{matrix}
f\left(c\right)=y_0\\
\text{and}\\
c\in\left[a,b\right]
\end{matrix}
\right.
\]
|
136 |
slope of a curve at a point
$P\left(x_0,f\left(x_0\right)\right)$
|
\[
m=\lim\limits_{h\rightarrow0}\frac{f\left(x_0+h\right)-f\left(x_0\right)}{h}
\]
|
138 |
difference quotient
|
\[
\frac{f\left(x_0+h\right)-f\left(x_0\right)}{h}
\]
|