314 |
antiderivative
|
\[
\]
|
314 |
indefinite integral
|
\[
\]
|
314 |
integrand
|
\[
\]
|
314 |
variable of integration
|
\[
\]
|
314 |
constant of integration
|
\[
\]
|
315 |
integral formulas
|
table 4.1.
\[
\]
|
316 |
initial value problems
|
\[
\]
|
317 |
solve differential equations
|
\[
\]
|
316 |
general solution
|
\[
\]
|
317 |
particular solution
|
\[
\]
|
317 |
mathematical modeling
|
\[
\]
|
323 |
arithmetic rules for integration
|
table 4.2.
\[
\]
|
324 |
integrals for
$\sin^2 x$ and $\cos^2 x.$
|
\[
\]
|
326 |
substitution method of integration (reverse chain rule)
|
\[
\]
|
329 |
estimating integrals with finite sums
|
\[
\]
|
333 |
displacement
|
\[
\]
|
333 |
distance traveled (trip distance)
|
\[
\]
|
333 |
error magnitude
|
\[
\]
|
330 |
estimating area
|
\[
\]
|
331 |
estimating distance
|
\[
\]
|
334 |
estimating volume of a sphere
|
\[
\]
|
335 |
estimating average value of a nonnegative function
|
\[
\]
|
335 |
estimating average value of a function
|
\[
\]
|
340 |
sigma notation
|
\[
\]
|
343 |
partition of an interval
|
\[
\]
|
343 |
Riemann sum
for $f$ on interval $I$
|
\[
\]
|
343 |
limits of integration
|
\[
\]
|
343 |
integrable function
|
\[
\]
|
343 |
definite integral
|
\[
\]
|
343 |
Theorem 1 Existence of Definite Integral
|
\[
\]
|
344 |
notation for definite integrals
|
\[
\lim\limits_{n\rightarrow\infty}\sum_{k=1}^{n}
f\left(c_k\right)\Delta x
=\int_a^bf\left(x\right)\dx
\]
|
345 |
area under a curve
|
\[
\]
|
346 |
average (mean) value of a function
|
\[
\]
|
347 |
rules for definite integrals
|
Table 4.5.
\[
\]
|
352 |
Mean Value Theorem for definite integrals
|
\[
\]
|
354 |
Theorem 3 Part I. Fundamental Theorem of Calculus
|
\[
\]
|
358 |
Theorem 3 Part II. Fundamental Theorem of Calculus. Integral Evaluation Theorem.
|
\[
\]
|
359 |
integral evaluation notation
|
\[
\]
|
359 |
net area, total area
|
\[
\]
|
360 |
how to find total area
|
\[
\]
|
360 |
household electricity
|
\[
\]
|
360 |
rms (root mean square)
|
\[
\]
|
360 |
peak voltage
|
\[
\]
|
360 |
moving coil galvanometer
|
\[
\]
|
360 |
marginal cost, marginal revenue
|
\[
\]
|
365 |
Substitution Formula for Definite Integrals
|
\[
\]
|
365 |
evaluating definite integrals using antiderivatives
|
\[
\]
|
367 |
standard normal distribution, error function
|
\[
\]
|
368 |
area between curves
|
\[
\]
|
368 |
how to find area between curves
|
\[
\]
|
369 |
boundaries with changing formulas
|
\[
\]
|
373 |
numerical integration / approximation
|
\[
\]
|
373 |
step size
|
\[
\]
|
374 |
Trapezoidal Rule
|
\[
\]
|
376 |
Error Estimate for Trapezoidal Rule
|
\[
\]
|
378 |
Simpson’s Rule
|
\[
\]
|
378 |
Error Estimate for Simpson’s Rule
|
\[
\]
|
383 |
the sine-integral function,
continuous extension of $(\sin t )/ t.$
|
\[
\mathrm{Si}\left(x\right)
=\int_0^xf\left(t\right)\dt\\
\text{where}\\
f\left(t\right)
= \left\{
\begin{matrix}
\frac{\sin t}{t}&t\neq0\\
1&t=0\\
\end{matrix}
\right.
\]
|
383 |
the error function
|
\[
\mathrm{erf}\left(x\right)=\frac{2}{\sqrt\pi}\int_{0}^{x}{e^{-t^2}dt}
\]
|