Page Description Equation
789 position vector of a point. Given here by $\vect{r}$ of point $\left(x,y,z\right)$ \[ \vect{r}=\left\langle x,y,z\right\rangle =x\vect{i}+y\vect{j}+z\vect{k} \]
790 distance between points $P_1\left(x_1,y_1,z_1\right)$ and $P_2\left(x_2,y_2,z_2\right)$ \[ \abs{\overrightarrow{P_1 P_2}} =\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2} \]
792 standard equation for the sphere of radius $a$ and center $P_0\left(x_0,y_0,z_0\right)$ \[ \left(x-x_0\right)^2+\left(y-y_0\right)^2+\left(z-z_0\right)^2=a^2 \]
793 midpoint between points $P_1\left(x_1,y_1,z_1\right)$ and $P_2\left(x_2,y_2,z_2\right)$ \[ \left( \frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2} \right) \]
802 cross product (vector product) \[ \vect{u}\times\vect{v}= \begin{vmatrix} \vect{i}&\vect{j}&\vect{k}\\ u_1&u_2&u_3\\ v_1&v_2&v_3 \end{vmatrix} \]
801 area of parallelogram. The area $A$ of the parallelogram with base $\abs{\vect{u}}$ and height $\abs{\vect{v}}\sin\theta$. \[ A=\abs{\vect{u}\times\vect{v}} \]
802 area of triangle. The area $A$ of the triangle with base $\abs{\vect{u}}$ and height $\abs{\vect{v}}\sin\theta.$ Note. Given three points, you can use either formula to find the area of the parallelogram or triangle they form without having to find the angle $\theta.$ \[ A=\frac{1}{2}\abs{\vect{u}\times\vect{v}} \]
803 triple scalar product (box product) \[ \left(\vect{u}\times\vect{v}\right)\cdot\vect{w}= \begin{vmatrix} u_1 &u_2 &u_3\\ v_1 &v_2 &v_3\\ w_1 &w_2 &w_3 \end{vmatrix} \]
804 volume of parallelpiped \[ V=\abslr{ \left(\vect{u}\times\vect{v}\right)\cdot\vect{w} } \]
803 torque \[ \]
Vector Equation for a Line in Space. If $\vect{r}_0$ is the position vector of $P_0\left(x_0,y_0,z_0\right),$ then a vector equation for the line $L$ through $P_0\left(x_0,y_0,z_0\right)$ parallel to $\vect{v}$ is given. This defines $\vect{r}$ as the position vector for each point $P\left(x,y,z\right)$ on $L$ at $t.$ It is often more convenient to use the second form. \[ \vect{r}\left(t\right) =\vect{r}_0+t\vect{v}\quad -\infty\lt t\lt\infty \\ \vect{r}\left(t\right) =\left(x_0+tv_1\right)\vect{i} +\left(y_0+tv_2\right)\vect{j} +\left(z_0+tv_3\right)\vect{k} \]
Parametric Equations for a Line in Space. The standard parametrization of the line passing through $P_0\left(x_0,y_0,z_0\right)$ parallel to $\vect{v}=v_1\vect{i}+v_2\vect{j}+v_3\vect{k}.$ \[ x=x_0+tv_1\\ y=y_0+tv_2\\ z=z_0+tv_3 \]
Vector Parallel to a Line in Space. If the parametrization \[ x=x_0+tv_1\\ y=y_0+tv_2\\ z=z_0+tv_3 \] of a line is given, then the vector is parallel to the line. \[ \vect{v}=v_1\vect{i}+v_2\vect{j}+v_3\vect{k} \]
811 Vector Normal to a Plane, Equation for a Plane. The plane normal to any vector \( \vect{n}=\left(A,B,C\right)=A\vect{i}+B\vect{j}+C\vect{k} \) passing through the point $P_0\left(x_0,y_0,z_0\right).$ \[ \begin{align*} &\textbf{Vector Form:}\\ &\vect{n}\cdot\overrightarrow{P_0 P}=0\\ &\textbf{Component Form:}\\ &A(x-x_0)+B(y-y_0)+C(z-z_0)=0\\ &\textbf{Component Form (Simplified):}\\ &Ax+By+Cz=D\\ &(D=Ax_0+By_0+Cz_0) \end{align*} \]
Conversely, the vector normal to a plane $Ax+By+Cz=D$. \[ \vect{n}=A\vect{i}+B\vect{j}+C\vect{k} \]
The equation of the line $L$ normal to $\vect{n}=\left(A,B,C\right)=A\vect{i}+B\vect{j}+C\vect{k}$ and passing through the point $P_0\left(x_0,y_0,z_0\right)$ \[ Ax+By=C\\ \left(C=Ax_0+By_0\right) \]
Vector Normal to a Line. Conversely, the vector normal to any line $Ax+By=C.$ Note that the slope of any line normal to $\vect{n}$ is $-\frac{A}{B}$ and the slope of any line parallel to $\vect{n}$ is $\frac{B}{A}.$ \[ \vect{n} = A\vect{i} + B\vect{j} \]
812 Vector Parallel to the Line of Intersection of two Planes. If $\vect{n}_1$ and $\vect{n}_2$ are vectors normal to planes $P_1$ and $P_2$ respectively, then $\vect{n}_1\times \vect{n}_2$ is a vector parallel to the line of intersection of the two planes. If $\vect{n}_1\times\vect{n}_2=\zeros$ then $P_1$ and $P_2$ are parallel. \[ \]
812 Equation of the Line of Intersection of Two Planes. If $\vect{n}=A\vect{i}+B\vect{j}+C\vect{k}$ is a vector parallel to the line of intersection of two planes and if the point $P_0\left(x_0,y_0,z_0\right)$ lies on the line then the equation of the line is as given. \[ x=x_0+At\\ y=y_0+Bt\\ z=z_0+Ct\\ \]
814 Angle between Intersecting Planes. If $\vect{n}_1$ and $\vect{n}_2$ are vectors normal to planes $P_1$ and $P_2$ respectively, then the angle between the planes is as given. \[ \theta = \cos^{-1} \frac{\vect{n}_1\cdot\vect{n}_2}{\abs{\vect{n}_1}\abs{\vect{n}_2}} \]
814 Distance from a Point to a Line. The distance $d$ from a point $S$ to the line that passes through point $P$ parallel to $\vect{v}.$ \[ d=\frac{\abslr{\overrightarrow{PS}\times\vect{v}}} {\abs{\vect{v}}} \]
814 Distance from a Point to a Plane. The distance $d$ from a point $S$ to the plane that passes through point $P$ and is normal to $\vect{n}=A\vect{i}+B\vect{j}+C\vect{k}.$ \[ d=\abslr{ \overrightarrow{PS} \cdot \frac{\vect{n}}{\abs{\vect{n}}} } \]
Equation of the Line of Intersection of two Planes. If $\vect{n}_1$ and $\vect{n}_2$ are vectors normal to planes $P_1$ and $P_2$ respectively, then $\vect{n}=\vect{n}_1\times\vect{n}_2=$ vector parallel to the line of intersection of the two planes. If $\vect{n}_1\times\vect{n}_2=\zeros$ then $P_1$ and $P_2$ are parallel. If the point $P_0\left(x_0,y_0,z_0\right)$ lies on the line then the equation of the line is as given. \[ \vect{r}\left(t\right)=\vect{r}_0+t\vect{v}\\ \text{where}\\ \vect{v}=\vect{n}_1\times\vect{n}_2=v_1\vect{i}+v_2\vect{j}+v_3\vect{k}\\ x=x_0+tv_1\\ y=y_0+tv_2\\ z=z_0+tv_3 \]
826 Equations for Curves in Space where \[ x=f\left(t\right)\\ y=g\left(t\right)\\ z=h\left(t\right) \] \[ \vect{r}\left(t\right)=f\left(t\right)\vect{i}+g\left(t\right)\vect{j}+h\left(t\right)\vect{k} \]
829 Line Tangent to Curve traced by $\vect{r}.$ If $ \vect{r}\left(t\right) =f\left(t\right)\vect{i} +g\left(t\right)\vect{j} +h\left(t\right)\vect{k} $ and $P_0\left(x_0,y_0,z_0\right)$ is the terminal point of $\vect{r}\left(t_0\right)$ then the line tangent to the curve traced by $\vect{r}$ at $P_0$ (i.e. at $t=t_0$) is given. \[ x=x_0+f'\left(t_0\right)\left(t-t_0\right)\\ y=y_0+g'\left(t_0\right)\left(t-t_0\right)\\ z=z_0+h'\left(t_0\right)\left(t-t_0\right) \]
848 helix equation \[ \vect{r}\left(t\right) =\left(a\cos t\right)\vect{i} +\left(a\sin t\right)\vect{j} +bt\vect{k} \]
Arc Length Parameter with Base Point $P(t_0).$ If \( \vect{r}\left(t\right) =f\left(t\right)\vect{i} +g\left(t\right)\vect{j} +h\left(t\right)\vect{k} \) is a smooth curve traced exactly once on the interval $[t_0, t],$ and if $\vect{v}=\frac{d\vect{r}}{dt},$ then the curve’s length on that interval is given. $s$ is called an arc length parameter. \[ \begin{align*} s(t)&=s(t_0,t)\\ &=\int\limits_{t_0}^t \abs{\vect{v}(\tau)}\,d\tau\\ &=\int\limits_{t_0}^t \sqrt{ \left(\frac{df}{d\tau}\right)^2 +\left(\frac{dg}{d\tau}\right)^2 +\left(\frac{dh}{d\tau}\right)^2 }\,d\tau\\ &=\int\limits_{t_0}^t \sqrt{ \left(\frac{dx}{d\tau}\right)^2 +\left(\frac{dy}{d\tau}\right)^2 +\left(\frac{dz}{d\tau}\right)^2 }\,d\tau\\ &=\int\limits_{t_0}^t \sqrt{ \left[x'(\tau)\right]^2 \left[y'(\tau)\right]^2 \left[z'(\tau)\right]^2 }\,d\tau \end{align*} \]
Speed on a Smooth Curve \[ \frac{ds}{dt} =\left|\vect{v}\left(t\right)\right| =\left|\vect{v}\right| \]
Unit Tangent Vector \[ \vect{T}=\frac{d\vect{r}}{\ds} =\frac{d\vect{r}/\dt}{\ds/\dt} =\frac{\vect{v}}{\left|\vect{v}\right|} \]
Curvature If $\vect{r}(t)$ is a smooth curve then the curvature (a scalar) of $\vect{r}$ is given. \[ \begin{align*} \kappa=\abslr{\frac{d\vect{T}}{ds}} &=\abslr{\frac{d}{ds}\left(\frac{d\vect{r}}{ds}\right)}\\ &=\abslr{\frac{d^2\vect{r}}{ds^2}}\\ &=\frac{1}{\abslr{\vect{v}}}\abslr{\frac{d\vect{T}}{dt}}\\ &=\frac{1}{\abs{\vect{v}}} \abslr{ \frac{d}{dt} \left( \frac{\vect{v}}{\abslr{\vect{v}}} \right) } \end{align*} \]
Principal Unit Normal \[ \vect{N} =\frac{1}{\kappa}\frac{d\vect{T}}{ds} =\frac{d\vect{T}/dt}{\abs{d\vect{T}/dt}} \]
Radius of Curvature \[ \rho=\frac{1}{\kappa} \]
Binormal Vector \[ \vect{B}=\vect{T}\times\vect{N} \]
Curvature \[ \kappa=\abslr{\frac{d\vect{T}}{ds}} =\frac{\abslr{\vect{v}\times\vect{a}}}{\abslr{\vect{v}}^3} \]
850 Torsion \[ \tau=-\frac{d\vect{B}}{ds}\cdot\vect{N} =\frac{ \begin{vmatrix} \dot x&\dot y&\dot z\\ \ddot x&\ddot y&\ddot z\\ \dddot x&\dddot y&\dddot z\\ \end{vmatrix} }{ \abslr{\vect{v}\times\vect{a}}^2 } \]
851 Acceleration Tangential and Normal Components \[ a=a_T\vect{T}+a_N\vect{N} \]
851 acceleration, tangential component \[ a_T=\frac{d}{dt}\left|\vect{v}\right| \]
851 acceleration, normal component \[ a_N=\kappa\left|\vect{v}\right|^2=\sqrt{\left|\vect{a}\right|^2-\vect{a}_T^2} \]

Notes

Page Notes
827 Vector Functions
828 Limits of Vector Functions
828 Continuity of Vector Functions
828 Derivatives of Vector Functions. Use the product rule on cross products, but you must preserve the order.
833 Indefinite Integral of a Vector Function
834 Definite Integral of a Vector Function
829 Velocity Vector
829 Speed
829 Acceleration Vector
829 Unit Vector in Direction of Motion
833 Constant-Length Vector Theorem. If a vector has constant length with respect to its parameter, then the vector’s first derivative is orthogonal to it. \[ \exists c\forall t\left(\abs{\vect{r}(t)}=c\right) \Rightarrow\vect{r}\cdot\vect{r}'=\zeros \]