95 |
function (mapping)
|
\[
\vect{f}:X^m\rightarrow X^n \\
\textrm{where}\\
\vect{f}
= \left\{
\left(
\vect{x},\vect{f}
\left(
\vect{x}
\right)
\right)
\in X^{m+n}:\vect{x}\in X^m
\right\}
\]
|
97 |
graph of a function
|
\[
\mathrm{graph}\,f =
\left\{
\left(
\vect{x},f
\left(
\vect{x}
\right)
\right)
\in
\mathbb{R}^{n+1}:\vect{x}\in \mathbb{R}^n
\right\}\\
\textrm{where}\\
f:\mathbb{R}^n \rightarrow \mathbb{R}
\]
|
99 |
level set of value
$c$
|
\[
L_c =
\left\{
x\in U:f
\left(
\vect{x}
\right)=c
\right\}\\
\textrm{where}\\
f:U\subset\mathbb{R}^n\rightarrow\mathbb{R}
\;\textrm{and}\;
c\in\mathbb{R}
\]
|
100 |
section of the graph
of $f,$ the intersection of the graph
and a vertical plane.
|
\[
S_{x_i=0} =
\left\{
\left(
\vect{x},
f\left(\vect{x}\right)
\right)
\in
\mathbb{R}^{n+1}:x_i=0,
\vect{x}
\in \mathbb{R}^n
\right\}\\
\textrm{where}
\ \vect{x}=\left(x_1,\ldots,x_n\right)
\]
|
134
|
differentiable
|
\[
\lim_{x\rightarrow x_0}
\frac{ \left\|
f(\vect{x})-f(\vect{x}_0)
-\vect{T}(\vect{x}-\vect{x}_0)
\right\|}
{\left\|\vect{x}-\vect{x}_0\right\|}
= 0\\
\ \\
\mathbf{D}f\left(\vect{x}_0\right)\equiv\vect{T}
\]
|
135 |
derivative, matrix of partial derivatives
of
$f$ at $x_0.$
Also called the
differential
of $f.$
|
\[
\mathbf{D}f\left(\mathbf{x}_0\right)
= \begin{bmatrix}
\frac{\partial f_1}{\partial x_1}
&\cdots
&\frac{\partial f_1}{\partial x_n}\\
\vdots&&\vdots\\
\frac{\partial f_m}{\partial x_1}
&\cdots
&\frac{\partial f_m}{\partial x_n}
\end{bmatrix}
\]
|
128 |
partial derivative
|
|
132 |
equation of the line tangent
to the graph of a function
$f:\mathbb{R}\rightarrow\mathbb{R}$
at the point $x = x_0.$
Also called the
linear approximation to the function
$f$ at $x = x_0.$
|
\begin{align*}
y &= L\left(x\right)\\
&= f\left(x_0\right)+f'\left(x_0\right)(x-x_0)\\
&= f\left(x_0\right)
+\left[\frac{d}{dx}f\left(x_0\right)\right]\left(x-x_0\right)
\end{align*}
|
133 |
equation of the plane tangent
to the graph of a function
$f:R^2\rightarrow\mathbb{R}$
at the point
$\left(x_0,y_0\right).$
Also called the
linear approximation
to the function
$f$ at
$\left(x_0,y_0\right).$
|
\[
\begin{align*}
z &= L\left(x,y\right)\\
&= f\left(x_0,y_0\right)
+ \left[
\frac{\partial f}{\partial x}
\left(x_0,y_0\right)
\right]
\left(x-x_0\right)\\
& \qquad +
\left[
\frac{\partial f}{\partial y}
\left(x_0,y_0\right)
\right]
\left(y-y_0\right)
\end{align*}
\]
|
|
gradient
|
\[
\begin{align*}
\nabla f
&= \mathbf{D}f\left(\vect{x}_0\right)\\
&= \left[
\frac{\partial f}{\partial x},
\frac{\partial f}{\partial y},
\frac{\partial f}{\partial z}
\right]\\
&= \left(
\frac{\partial f}{\partial x},
\frac{\partial f}{\partial y},
\frac{\partial f}{\partial z}
\right)\\
&= \vect{i}\frac{\partial f}{\partial x}
+\vect{j}\frac{\partial f}{\partial y}
+\vect{k}\frac{\partial f}{\partial z}\\
\end{align*}
\]
|
142 |
equation of a space curve (general form)
|
\[
\begin{align*}
\vect{c}\left(t\right)
&= \left(
x\left(t\right),
y\left(t\right),
z\left(t\right)
\right)\\
&= x\left(t\right)\vect{i}
+ y\left(t\right)\vect{j}
+ z\left(t\right)\vect{k}\\
&= f\left(t\right)\vect{i}
+ g\left(t\right)\vect{j}
+ h\left(t\right)\vect{k}
\end{align*}
\]
\[
\textrm{where}\\
\begin{align*}
x&=f\left(t\right)\\
y&=g\left(t\right)\\
y&=h\left(t\right)
\end{align*}
\]
|
|
tangent vector to curve
$\vect{c}\left(t\right)
= x\left(t\right)\vect{i}
+ y\left(t\right)\vect{j}
+ z\left(t\right)\vect{k}$
|
\[
\vect{c}'\left(t\right)
= \left(
x'\left(t\right),
y'\left(t\right),
z'\left(t\right)
\right)
\]
|
148 |
equation of the line tangent to the curve
given by
$\vect{c}\left(t\right)
=x\left(t\right)\vect{i}
+y\left(t\right)\vect{j}
+z\left(t\right)\vect{k}$
at
$\vect{c}\left(t_0\right)=P_0\left(x_0,y_0,z_0\right)$
where
$\vect{c}^\prime\left(t_0\right)\neq\vect{0}.$
|
\[
\begin{align*}
\vect{l}\left(t\right)
&= \vect{c}\left(t_0\right)
+\vect{c}^\prime\left(t_0\right)\left(t-t_0\right)\\
x &= x_0+x^\prime\left(t_0\right)\left(t-t_0\right)\\
y &= y_0+y^\prime\left(t_0\right)\left(t-t_0\right)\\
z &= z_0+z^\prime\left(t_0\right)\left(t-t_0\right)
\end{align*}
\]
|
|
velocity and position are
orthogonal
if distance from the origin is constant.
(e.g. circles, spheres, etc.)
|
\[
\exists c\forall t: \left|\vect{r}\right|
= c\Rightarrow\vect{r}\cdot\vect{r}'
= 0
\]
|
|
general equation of a helix
|
\[
\vect{r}\left(t\right)
= a\cos{\left(ct\right)}\vect{i}
+ a\sin{\left(ct\right)}\vect{j}
+ b\vect{k}
\]
|
|
sum rule
|
|
|
product rule
|
|
|
quotient rule
|
|
|
constant multiple rule
|
|
|
chain rule, one-variable case
|
|
|
chain rule
|
|
164 |
directional derivative
of $f$
in the direction of the unit vector
$\vect{u}.$
|
\[
\frac{d}{dt}f\left(\vect{x}+t\vect{u}\right)
=\nabla f\left(\vect{x}\right)\cdot\vect{u}
\]
|
164 |
$\vect{u}$ is the
direction of zero change
in values of $f.$
|
\[
\nabla f\cdot\vect{u}=0
\]
|
168 |
equation of line tangent to level curve
$C=\left\{\left(x,y\right):f\left(x,y\right)=k\right\}$
at
$\left(x_0,y_0\right)$
if
$\nabla f\left(x_0,y_0\right)\neq\vect{0}$
|
\[
\nabla f\left(x_0,y_0\right)\cdot\left(x-x_0,y-y_0\right)=0
\]
|
167 |
equation of plane tangent to level surface
$S=\left\{\left(x,y,z\right):f\left(x,y,z\right)=k\right\}$
at
$\left(x_0,y_0,z_0\right)$
if
$\nabla f\left(x_0,y_0,z_0\right)\neq\vect{0}$
|
\[
\nabla f\left(x_0,y_0,z_0\right)\cdot\left(x-x_0,y-y_0,z-z_0\right)=0
\]
|