Page Description Equation
262 differentiation rules for paths \[ \]
146
261
velocity at $t$ on path $\vect{c}:R\rightarrow R^n$ given by $\vect{c}\left(t\right) =\left(x_1\left(t\right), \ldots,x_n\left(t\right)\right)$ \[ \begin{align*} \vect{v}=\vect{c}'\left(t\right) &= \left[ \begin{matrix} dx_1/dt\\ \vdots\\ \dx_n/\dt\\ \end{matrix} \right]\\ &=\left(\frac{dx_1}{dt},\ldots,\frac{dx_n}{dt}\right)\\ &=\left(x_1',\ldots,x_n'\right) \end{align*} \]
261 speed \[ \vect{v}=\norm{\vect{v}}=\norm{\vect{c}'(t)} \]
262 acceleration \[ \begin{multline*} \vect{a}\left(t\right) =\frac{d\vect{v}}{dt} =\vect{c}''\left(t\right)\\ =x''\left(t\right)\vect{i} +y''\left(t\right)\vect{j} +z''\left(t\right)\vect{k} \end{multline*} \]
263 $\vect{c}$ is a regular path at $t_0$ if this equation holds. If $\vect{c}$ is regular at all $t,$ then $\vect{c}$ is a regular path (a "very smooth" path). In this case, the curve looks smooth. (It need not look smooth to be smooth.) \[ \vect{c}^\prime\left(t_0\right)\neq\zeros \]
263 smooth path \[ \]
264 Newton's second law \[ \vect{F}=m\vect{a} \]
265 gravitational force exerted by mass $M$ on orbiting mass $m.$ \[ \begin{align*} m\vect{r}'' &=-\frac{GmM}{r^3}\vect{r}\\ &=-\frac{GmM}{r^2}\hat{\vect{r}} \end{align*} \]
265 (angular) frequency (angular speed) of a particle moving in a circular path of radius r. \[ \omega=\frac{v}{r} \]
265 equation for a particle moving with constant speed $v$ in a circular path. radius $r_0$ and angular frequency $\omega.$ ($\omega=\frac{v}{r},v$ constant) \[ \vect{r}\left(t\right) =\left(r\cos{\omega}t,r\sin{\omega}t\right) \]
265 acceleration. Normally this is only the radial component of acceleration, but this equation assumes speed is constant. \[ \vect{a}\left(t\right) =r''\left(t\right)=-\omega^2\vect{r}\left(t\right) =-r\omega^2\hat{\vect{r}} \]
centripetal force \[ \vect{F}_c=m\vect{a}=-mr\omega^2\hat{\vect{r}} \]
266 period for circular motion, $r=$ radius, $v=$ speed, $\omega=$ angular speed \[ T=\frac{2\pi r}{v}=\frac{2\pi}{\omega} \]
266 Kepler's third law. The square of the period of an object orbiting a mass $M$ is proportional to the cube of the radius. \[ T^2=\frac{4\pi^2}{GM}r^3=K_sr^3 \]
272 angular momentum. For planetary motion, $J$ is a conserved quantity \[ \vect{J}=\vect{r}\left(t\right) \times m\dot{\vect{r}}\left(t\right) =\vect{r}\times\vect{p} \]
272
289
a conserved quanity: one that is time independent. Here, $c$ is a conserved quantity \[ \frac{d\vect{c}}{dt}=0 \]
275 arc length of piecewise $C^1$ path $\vect{c}:\left[t_0,t_1\right]\rightarrow R^3$ where \( \vect{c}\left(t\right) =x\left(t\right)\vect{i} +y\left(t\right)\vect{j} +z\left(t\right)\vect{k} \) \[ \begin{align*} L(\vect{c}) &=\int_{t_0}^{t_1}\norm{\vect{c}'(t)}\dt\\ &=\int_{t_0}^{t_1} \sqrt{ \left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2 }\dt\\ &=\int_{t_0}^{t_1} \sqrt{ \left[x'(t)\right]^2 +\left[y'(t)\right]^2 +\left[z'(t)\right]^2 }\dt \end{align*} \]
279 arc length of piecewise $C^1$ path $\vect{c}:\left[t_0,t_1\right]\rightarrow R^n$ where \( \vect{c}\left(t\right) =x\left(t\right)\vect{i} +y\left(t\right)\vect{j} +z\left(t\right)\vect{k} \) \[ \begin{align*} L(\vect{c}) &=\int_{t_0}^{t_1}\norm{\vect{c}'(t)}\dt\\ &=\int_{t_0}^{t_1} \sqrt{ \left[x_1'(t)\right]^2 +\cdots +\left[x_n'(t)\right]^2 }\dt \end{align*} \]
276 piecewise $C^1$ or piecewise smooth \[ \]
278 infinitesimal displacement \[ \begin{align*} d\vect{s} &= \dx\vect{i} +\dy\vect{j} +\dz\vect{k}\\ &= \left( \frac{dx}{dt}\vect{i} +\frac{dy}{dt}\vect{j} +\frac{dz}{dt}\vect{k} \right)\dt \end{align*} \]
278 differential of arc length \[ \begin{align*} \ds &=\sqrt{\dx^2+\dy^2+\dz^2}\\ &=\sqrt{ \left(\frac{dx}{dt}\right)^2 +\left(\frac{dy}{dt}\right)^2 +\left(\frac{dz}{dt}\right)^2 }\dt \end{align*} \]
279 arc length function with base point $\vect{c}\left(a\right)$ where \( \vect{c}\left(t\right) =x\left(t\right)\vect{i} +y\left(t\right)\vect{j} +z\left(t\right)\vect{k}. \) \[ s\left(t\right)=\int_a^t \norm{\vect{c}'(u)}\du \]
279 speed in terms of the arc-length function \[ \frac{ds}{dt}=s'(t)=\norm{\vect{c}'(t)} \]
279 (Example 6) arc length of $y=f\left(x\right)$ on $a\le x\le b,$ parametrized by $t=x$ so that \( \vect{c}\left(t\right) =\vect{c}\left(x\right) =\left(x,f\left(x\right)\right). \) In the final integral, $x=a=t_0$ and $x=b=t_1$ (Notice that the image of $c$ equals graph $f.$) \[ \begin{align*} L(\vect{c}) &=\int_a^b\sqrt{1+\left(\frac{dy}{dx}\right)^2}\dx\\ &=\int_{x=a}^{x=b}\sqrt{dx^2+dy^2}\\ &=\int_{x=a}^{x=b}\ds\\ &=\int_{t_0}^{t_1}\ds\\ \end{align*} \]
278 arc length \[ \text{arc length}=\int_{t_0}^{t_1}\ds\\ \]
282 unit tangent vector \[ \vect{T} =\frac{d\vect{r}}{ds} =\frac{d\vect{r}/dt}{ds/dt} =\frac{\vect{v}}{\abs{\vect{v}}} \]
282 curvature If $\vect{r}(t)$ is a smooth curve then the curvature (a scalar) of $\vect{r}$ is given \[ \kappa =\abslr{\frac{d\vect{T}}{ds}} =\abslr{ \frac{d}{ds} \left(\frac{d\vect{r}}{ds}\right) } =\abslr{\frac{d^2\vect{r}}{ds^2}}\\ =\frac{1}{\abs{\vect{v}}}\abslr{\frac{d\vect{T}}{dt}} =\frac{1}{\abs{\vect{v}}} \abslr{ \frac{d}{dt} \left( \frac{\vect{v}}{\abs{\vect{v}}} \right) } \]
283 principal unit normal or principal normal vector \[ \vect{N}=\frac{1}{\kappa}\frac{d\vect{T}}{ds} =\frac{d\vect{T}/dt}{\abs{d\vect{T}/dt}} \]
radius of curvature \[ \]
283 binormal vector \[ \vect{B}=\vect{T}\times\vect{N} \]
282 curvature \[ \kappa =\abslr{\frac{d\vect{T}}{ds}} =\frac {\abs{\vect{v}\times\vect{a}}} {\abs{\vect{v}}^3} \]
283 torsion \[ \tau=-\frac{d\vect{B}}{ds}\cdot\vect{N} =\frac{ \begin{vmatrix} \dot{x}&\dot{y}&\dot{z}\\ \ddot{x}&\ddot{y}&\ddot{z}\\ \dddot{x}&\dddot{y}&\dddot{z} \end{vmatrix} }{\abs{\vect{v}\times\vect{a}}^2} \]
288 acceleration tangential and normal components \[ a=a_T\vect{T}+a_N\vect{N}\\ a_T=\frac{d}{dt}\abs{\vect{v}}\\ a_N=\kappa\abs{\vect{v}}^2 =\sqrt{\abs{\vect{a}}^2-\vect{a}_T^2} \]
287 gravitational force field \[ \begin{multline*} \vect{F}=\vect{F}\left(x,y,z\right) =-\nabla V =-\frac{mMG}{r^3}\vect{r}\\ = \left( \frac{-mMG}{r^3}x, \frac{-mMG}{r^3}y, \frac{-mMG}{r^3}z \right) \end{multline*} \]
288 gravitational potential \[ V=-\frac{mMG}{r} \]
288 Coulomb's law \[ \vect{F}=-\nabla V=\frac{\varepsilon Qe}{r^3}\vect{r} \]
288 equipotential surface \[ \]
289 definition of energy \[ E=\frac{1}{2}m\norm{\dot{\vect{r}}(t)}^2+V(\vect{r}(t)) \]
289 conservation of energy: If Newton's second law holds, then $E$ is independent of time. \[ \frac{dE}{dt}=0\\ \text{or}\\ E=\text{ constant} \]
290 escape velocity, $R_0=$ distance from center of mass $M$ when $v_e$ is reached, $g=\frac{GM}{R_0}$ \[ v_e =\sqrt{\frac{2MG}{R_0}} =\sqrt{2gR_0} \]
gravitational constant. not given in text, see Serway \[ G=6.67259 \left(85\right) \times10^{-11} \ \mathrm{N}\cdot\mathrm{m}^2/\mathrm{kg}^2 \]
290 $c(t)$ is a flow line for $F.$ ($F$ is a vector field.) also called a streamline or an integral curve. \[ \vect{c}^\prime\left(t\right) =\vect{F}\left(\vect{c}\left(t\right)\right) \]
294 del operator \[ \begin{align*} \nabla &=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)\\ &=\vect{i}\frac{\partial}{\partial x} +\vect{j}\frac{\partial}{\partial y} +\vect{k}\frac{\partial}{\partial z} \end{align*} \]
294 del operator applied to a function. gradient \[ \begin{align*} \nabla f &=\left(\frac{\partial f}{\partial x} ,\frac{\partial f}{\partial y} ,\frac{\partial f}{\partial z}\right)\\ &=\vect{i}\frac{\partial f}{\partial x} +\vect{j}\frac{\partial f}{\partial y} +\vect{k}\frac{\partial f}{\partial z} \end{align*} \]
295 divergence. $F:R^2\rightarrow R^2.$ If $F$ is the velocity field of a gas or fluid, the divergence measures the rate of expansion of area \[ \text{div}\vect{F}=\nabla\cdot\vect{F}=\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y} \]
295 divergence. $F:R^3\rightarrow R^3.$ If $F$ is the velocity field of a gas or fluid, the divergence measures the relative rate of expansion of volume of the fluid. \[ \text{div}\vect{F} =\nabla\cdot\vect{F} =\frac{\partial F_1}{\partial x} +\frac{\partial F_2}{\partial y} +\frac{\partial F_3}{\partial z} \]
296 See the book for more details about $V$ and this approximation. \[ \left(\nabla\cdot\vect{F}\right) \left(\vect{x}_0\right)\approx \left. \frac{1}{V\left(0\right)} \frac{dV\left(t\right)}{dt} \right|_{t=0} \]
295 If $F$ is the velocity field of a fluid then it is expanding in volume. \[ \nabla\cdot\vect{F}\lt0 \]
295 If $F$ is the velocity field of a fluid then it is neither expanding nor compressing. \[ \nabla\cdot\vect{F}=0 \]
295 If $F$ is the velocity field of a fluid then it is compressing in volume. \[ \nabla\cdot\vect{F}\gt0 \]
299 curl. $F:R^3\rightarrow R^3.$ \[ \begin{multline*} \mathrm{curl}\ \vect{F} = \nabla\times\vect{F} = \begin{vmatrix} \vect{i}&\vect{j}&\vect{k}\\ \frac{\partial}{\partial x} &\frac{\partial}{\partial y} &\frac{\partial}{\partial z}\\ F_1&F_2&F_3 \end{vmatrix}\\ = \left( \frac{\partial F_3}{\partial y} -\frac{\partial F_2}{\partial z} \right)\vect{i} + \left( \frac{\partial F_1}{\partial z} -\frac{\partial F_3}{\partial x} \right)\vect{j}\\ + \left( \frac{\partial F_2}{\partial x} -\frac{\partial F_1}{\partial y} \right)\vect{k} \end{multline*} \]
301 $v=$ velocity field of a rigid object rotating about the $z-axis$ with angular velocity $\omega;$ $r=$ position of the point in the object with velocity $v.$ \[ \vect{v}=\vect{v}\left(x,y,z\right) =\vect{\omega}\times\vect{r} =-\omega y\vect{i}+\omega x\vect{j}\\ \vect{r}=x\vect{i}+y\vect{j}+z\vect{k}\\ \vect{\omega}=\omega\vect{k} \]
301 curl of the velocity field of a rigid object rotating about the $z$-axis with velocity $\vect{v}$ and angular velocity $\omega.$ It is directed along the axis of rotation with magnitude twice the angular speed. \[ \nabla\times\vect{v}=2\vect{\omega} \]
301 if this condition holds for the flow of a fluid with velocity field $v$ then the vector field is irrotational, no whirlpools \[ \nabla\times\vect{v}=\vect{0} \]
303 gradient is curl free for any $C^2$ function. \[ \nabla\times\left(\nabla f\right)=\zeros \]
304 curl is divergence free for any $C^2$ function. \[ \nabla\cdot\left(\nabla\times\vect{F}\right)=0 \]
303 If $F$ is a vector field in the $xy$-plane, then the scalar curl is the function of $x$ and $y$ that is the coefficient of $k$ in the given equation. \[ \nabla\times\vect{F}=\left(\frac{\partial F_1}{\partial x}-\frac{\partial F_2}{\partial x}\right)\vect{k} \]
305 Laplace operator \[ \begin{align*} \nabla^2 &= \left( \frac{\partial^2}{\partial x^2}, \frac{\partial^2}{\partial y^2}, \frac{\partial^2}{\partial z^2} \right)\\ &= \vect{i}\frac{\partial^2}{\partial x^2} +\vect{j}\frac{\partial^2}{\partial y^2} +\vect{k}\frac{\partial^2}{\partial z^2} \end{align*} \]
305 Laplace operator applied to a function \[ \begin{align*} \nabla^2f &=\nabla\cdot\left(\nabla f\right)\\ &=\frac{\partial^2f}{\partial x^2} +\frac{\partial^2f}{\partial y^2} +\frac{\partial^2f}{\partial z^2} \end{align*} \]

Notes

Page Notes
285 class $C^k$ vector field.
285 vector field
285 scalar field
285 component scalar fields
285 velocity field
285 steady state (flow)
287 gradient vector field
287 energy (heat flux) vector field
287 conductivity
287 isotherm