Chapter 6 The Change of Variables Formula and Applications of Integration
Page | Description | Equation |
---|---|---|
377 |
|
\[ \frac{\partial\left(x,y\right)} {\partial\left(u,v\right)} = \begin{vmatrix} \frac{\partial x}{\partial u} &\frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u} &\frac{\partial y}{\partial v}\\ \end{vmatrix} \] |
387 |
$T\left(u,v,w\right)$ \( =\left( x\left(u,v,w\right), y\left(u,v,w\right), z\left(u,v,w\right) \right) \) |
\[ \frac{\partial\left(x,y,z\right)} {\partial\left(u,v,w\right)} = \begin{vmatrix} \frac{\partial x}{\partial u} &\frac{\partial x}{\partial v} &\frac{\partial x}{\partial w}\\ \frac{\partial y}{\partial u} &\frac{\partial y}{\partial v} &\frac{\partial y}{\partial w}\\ \frac{\partial z}{\partial u} &\frac{\partial z}{\partial v} &\frac{\partial z}{\partial w}\\ \end{vmatrix} \] |
381 |
|
\[ \begin{multline*} \int_{I}f\left(x\right)\dx =\int_{I\ast} f\left(x\left(u\right)\right) \abslr{ \frac{dx}{du} }\du\\ =\int_{a}^{b} f\left(x\left(u\right)\right) \frac{dx}{du}\du =\int_{x\left(a\right)}^{x\left(b\right)} f\left(x\right)\dx \end{multline*} \] |
382 |
|
\[ \begin{multline*} \iint_{D}f\left(x,y\right)\dx\dy\\ =\iint_{D\ast} f\left( x\left(u,v\right), y\left(u,v\right) \right) \abslr{ \frac{\partial\left(x,y\right)} {\partial\left(u,v\right)} }\du\dv \end{multline*} \] |
383 |
|
\[ \begin{multline*} \iint_{D}f\left(x,y\right)\dx\dy\\ =\iint_{D\ast} f\left(r\cos{\theta},r\sin{\theta}\right) r\dr\,d\theta \end{multline*} \] |
377 |
|
\[ \begin{align*} A\left(D\right) &= \iint_{D}\dx\dy\\ &= \iint_{D\ast} \abslr{ \frac{\partial\left(x,y\right)} {\partial\left(u,v\right)} }\du\dv \end{align*} \] |
377 378 380 |
|
\[ A\left(D\right) =\iint_{D\ast}\left|\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)}\right|\dr\,d\theta =\iint_{D\ast} r d r d\theta \] |
385 |
|
\[ \int_{-\infty}^{\infty}{e^{-x^2}dx}=\sqrt\pi \] |
387 |
|
\[ \begin{multline*} \iint_{W}f\left(x,y,z\right)\dx\dy\dz\\ =\iint_{W\ast} f\left( x\left(u,v\right), y\left(u,v\right), z\left(u,v\right) \right)\\ \abs{ \frac{\partial\left(x,y,z\right)} {\partial\left(u,v,w\right)} } \du\dv\dw \end{multline*} \] |
387 |
|
\[ \begin{multline*} V\left(W\right) =\iint_{W}\dx\dy\dz\\ =\iint_{W\ast} \abslr{ \frac{\partial\left(x,y,z\right)} {\partial\left(u,v,w\right)} }\du\dv\dw \end{multline*} \] |
388 |
|
\[ \begin{multline*} \iint_{W} f\left(x,y,z\right)\dx\dy\dz\\ =\iint_{W\ast} f\left( r\cos{\theta}, r\sin{\theta}, z \right) r\dr\,d\theta\dz \end{multline*} \] |
389 |
|
\[ \begin{multline*} \iint_{W}f\left(x,y,z\right) \dx\dy\dz\\ = \iint_{W\ast} f\left( \rho\sin{\varphi} \cos{\theta}, \rho\sin{\varphi}\sin{\theta}, \rho\cos{\varphi} \right)\\ \rho^2\sin{\varphi} \,d\rho \,d\theta \,d\varphi \end{multline*} \] |
Notes |
|
Page | Notes |
---|---|
368 |
|
372 |
|
373 |
|
371 |
|
382 |
|