Page Description Equation
422 path integral \[ \int_{\vect{c}}f\left(x,y,z\right)\ds =\int_a^b f(\vect{c}(t))\norm{\vect{c}'(t)}\dt \]
424 area of a fence \[ \int_{\vect{c}}f\left(x,y\right)\ds =\int_a^b f(\vect{c}(t)) \norm{\vect{c}'(t)}\dt \]
431 line integral. $\vect{T}\left(t\right)$ $=\vect{c}'t/\norm{\vect{c}'(t)}$ is the unit tangent vector to $c.$ \[ \begin{multline*} \int_{\vect{c}}{\vect{F}\cdot\,d\vect{s}} =\int_{\vect{c}} {\vect{F}\cdot\vect{T}\ds}\\ =\int_a^b \vect{F}\left(\vect{c}\left(t\right)\right) \cdot\vect{c}'\left(t\right) \dt\\ =\int_a^b\vect{F}(\vect{c}(t)) \cdot\vect{T}(t) \norm{c'(t)} \dt \end{multline*} \]
430 work done by force field $F$ \[ W=\int_{\vect{c}} \vect{F}\cdot\,d\vect{s} =\int_a^b \vect{F}\left(\vect{c}\left(t\right)\right) \cdot\vect{c}'\left(t\right) \dt \]
432 integral of a differential form along a path $c$ \[ \begin{multline*} \int_{\vect{c}}{\vect{F}\cdot d\vect{s}} =\int_{\vect{c}} F_1\dx+F_2\dy+F_3\dz\\ =\int_a^b \left( F_1\frac{dx}{dt} +F_2\frac{dy}{dt} +F_3\frac{dz}{dt} \right) \dt \end{multline*} \]
437 reparametrization definition where $h:I\rightarrow I_1 C1$ is one-to-one and onto and $\vect{c}:I_1\rightarrow\R^3$ is a piecewise $C^1$ map \[ \vect{p}=\vect{c}\circ h:I\rightarrow\R^3 \]
435 orientation preserving reparametrization where $\vect{c}:\left[a_1,b_1\right]\rightarrow\R^3$ and $\vect{p}:\left[a,b\right]\rightarrow\R^3$ \[ \vect{p}\left(a\right)=\vect{c}\left(a_1\right)\\ \text{and}\\ \vect{p}\left(b\right)=\vect{c}\left(b_1\right) \]
435 orientation reversing reparametrization where $\vect{c}:\left[a_1,b_1\right]\rightarrow\R^3$ and $\vect{p}:\left[a,b\right]\rightarrow\R^3$ \[ \vect{p}\left(a\right)=\vect{c}\left(b_1\right)\\ \text{and}\\ \vect{p}\left(b\right)=\vect{c}\left(a_1\right) \]
437 line integral for orientation preserving change of parametrization, where $F$ is a vector field continuous on the $C^1$ path $\vect{c}:\left[a_1,b_1\right]\rightarrow\R^3$ and $\vect{p}:\left[a,b\right]\rightarrow\R^3$ is an orientation preserving reparametrization of $c.$ \[ \int_{\vect{p}}{\vect{F}\cdot d\vect{s}} =\int_{\vect{c}}{\vect{F}\cdot d\vect{s}} \]
437 line integral for orientation reversing change of parametrization, where $F$ is a vector field continuous on the $C^1$ path $\vect{c}:\left[a_1,b_1\right]\rightarrow\R^3$ and $\vect{p}:\left[a,b\right]\rightarrow\R^3$ is an orientation reversing reparametrization of $c.$ \[ \int_{\vect{p}}{\vect{F}\cdot d\vect{s}} =-\int_{\vect{c}}{\vect{F}\cdot d\vect{s}} \]
439 path integral for reparametrization. This says that path integrals don't change under any reparametrization. \[ \int_{\vect{c}}f\left(x,y,z\right)\ds =\int_{\vect{p}}f\left(x,y,z\right)\ds \]
440 line integrals of gradient vector fields. Recall that a vector field $F$ is a gradient vector field if $\vect{F}=\mathrm{\nabla f}$ for some real-valued function $f$.) \[ \begin{multline*} \int_\vect{c} \nabla f\cdot d\vect{s} =\int_a^b \nabla f \left(\vect{c}\left(t\right)\right) \vect{c}' \left(t\right) \dt\\ =f\left(\vect{c}\left(b\right)\right) -f\left(\vect{c}\left(a\right)\right) \end{multline*} \]
442 line and path integrals over oriented simple and simple closed curves, where $C$ is a simple or simple closed curve parametrized by the orientation preserving $c.$ This says that the integral doesn't change for any orientation preserving parametrization $c.$ \[ \int_{C}{\vect{F}\cdot d\vect{s}} =\int_{\vect{c}} \vect{F}\cdot d\vect{s}\\ \text{and}\\ \int_{C}f\ds=\int _{\vect{c}}f\ds \]
444 line integrals over curves with opposite orientations \[ \int_{C}{\vect{F}\cdot d\vect{s}} =-\int_{C-}{\vect{F}\cdot d\vect{s}} \]
444 line integral over piecewise simple curves \[ \begin{multline*} \int_{C}{\vect{F}\cdot d\vect{s}} =\sum_{n=1}^{k}\int_{C_n} \vect{F}\cdot d\vect{s}\\ =\int_{C_1}{\vect{F}\cdot d\vect{s}} +\int_{C_2}{\vect{F}\cdot d\vect{s}} +\cdots+\int_{C_k}{\vect{F}\cdot d\vect{s}} \end{multline*} \]
453 parametrized surface \[ S=\mathrm{\Phi}\left(D\right) \]
454 parametric equation of a plane \[ \mathrm{\Phi}\left(u,v\right)=u\vect{a}+v\vect{b}+\vect{c} \]
454 equation of a plane (standard form) derived from a parametrization of the plane \[ \vect{N}\cdot\left(x-x_0,y-y_0,z-z_0\right)=0\\ A\left(x-x_0\right)+B\left(y-y_0\right)+C\left(z-z_0\right)=0\\ \text{where}\\ \vect{N} =\vect{a}\times\vect{b} =A\vect{i} +B\vect{j} +C\vect{k}\\ \text{and}\\ \Phi\left(u,v\right) =u\vect{a} +v\vect{b} +\vect{c} \]
454 tangent vector to surface at $\Phi\left(u_0,v_0\right)$ and tangent to curve at $\Phi\left(u_0,v_0\right)$ and to the curve $\vect{\Phi}\left(\vect{u}_\zeros,\vect{t}\right)$ contained by the surface. \[ \begin{multline*} \vect{T}_v=\frac{\partial\Phi}{\partial v} =\frac{\partial x}{\partial v}\left(u_0,v_0\right) \vect{i}\\ +\frac{\partial y}{\partial v}\left(u_0,v_0\right) \vect{j} +\frac{\partial z}{\partial v}\left(u_0,v_0\right) \vect{k} \end{multline*} \]
454 tangent vector to surface at $\mathrm{\Phi}\left(u_0,v_0\right)$ and to the curve $\vect{\Phi}\left(\vect{t},\vect{v}_\zeros\right)$ contained by the surface. \[ \begin{multline*} \vect{T}_u =\frac{\partial\Phi}{\partial u} =\frac{\partial x}{\partial u}\left(u_0,v_0\right) \vect{i}\\ +\frac{\partial y}{\partial u}\left(u_0,v_0\right) \vect{j} +\frac{\partial z}{\partial u}\left(u_0,v_0\right) \vect{k} \end{multline*} \]
454 \[ \vect{N}\cdot\left(x-x_0,y-y_0,z-z_0\right)=0\\ A\left(x-x_0\right)+B\left(y-y_0\right)+C\left(z-z_0\right)=0\\ \text{where}\\ \vect{N}=\vect{T}_u\times\vect{T}_v =A\vect{i}+B\vect{j}+C\vect{k}\\ \text{and}\\ \Phi\left(u,v\right) =u\vect{a}+v\vect{b}+\vect{c}\\ \]
457 parametrization of the graph of a function $g:\R^2\rightarrow\R$ \[ x=u,y=v,z=g\left(u,v\right) \]
461 area of a surface over a region $D$ \[ A\left(S\right) =\iint_D\norm{\vect{T}_u\times\vect{T}_v} \du\dv \]
461 area of a surface over a piecewise defined region \[ A\left(S\right)=\sum A\left(S_i\right) \]
462 the norm $\norm{\vect{T}_u\times\vect{T}_v}$ \[ \norm{\vect{T}_u\times\vect{T}_v} =\sqrt{ \left[ \frac {\partial(x,y)} {\partial(u,v)} \right]^2 + \left[ \frac {\partial(y,z)} {\partial(u,v)} \right]^2 + \left[ \frac {\partial(x,z)} {\partial(u,v)} \right]^2 } \]
465 surface area of a graph where $x=u,$ $y=v,$ and $z=g\left(u,v\right)$ \[ A\left(S\right) =\iint_{D} \left( \sqrt{ \left( \frac{\partial g}{\partial x} \right)^2 +\left( \frac{\partial g}{\partial y} \right)^2 +1 } \right) \,dA \]
467 surface of revolution \[ \begin{multline*} A(S)=2\pi\int_a^b \abs{f\left(x\right)} \sqrt{1+\left[f'\left(x\right)\right]^2} \dx\\ =\int_{\vect{c}} 2\pi \abs{f\left(x\right)} \ds \end{multline*} \]
474 integral of scalar function over a surface \[ \begin{multline*} \iint_S{f\left(x,y,z\right)\,dS}\\ =\iint_D f\left(\Phi(u,v)\right) \norm{\vect{T}_u\times\vect{T}_v} \du\dv \end{multline*} \]
476 integrals over graphs \[ \]
484 surface integral of vector fields \[ \iint_{\mathrm{\Phi}}{\vect{F}\cdot d\vect{S}} =\iint_{D} \vect{F}\cdot \left( \vect{T}_u\times\vect{T}_v \right) \du\dv \]

Notes

Page Notes
441 definitions. A simple curve $C$ is the image of a piecewise $C^1$ map $\vect{c}:I\rightarrow\R^3$ that is one-to-one on an interval $I$; $c$ is called a parametrization of $C$. Thus, a simple curve is one that does not intersect itself. If $I=\left[a,b\right]$ we call $\vect{c}\left(a\right)$ and $\vect{c}\left(b\right)$ endpoints of the curve.
441 definitions. Each simple curve has two orientations (directions) associated with it. A simple curve together with a sense of direction is called an oriented simple curve or directed simple curve.
442 definition of simple closed curve.
453 definition differentiable or $C^1$ surface
455 definition of regular (smooth) surface