Chapter 3 Conditional Probability and Independence
Page | Description | Equation |
---|---|---|
65 |
|
\[ \Pr{\left(A\middle| B\right)} =\frac{ \Pr{ \left(AB\right) }}{ \Pr{ \left(B\right) }}\\ \] |
|
\[ E_2 \subset E_1\\ \Rightarrow \Pr{ \left( E_2 \middle| A \right) } \le \Pr{ \left( E_1 \middle| A \right) } \] | |
|
\[ \Pr{ \left( E \middle| A\right) } =1 - \Pr{\left( E^c \middle| A\right) } \] | |
96 |
|
\[ \begin{multline*} \Pr{\left( E_1 \cup E_2 \middle| A \right)}\\ = \Pr{\left( E_1 \middle| A \right)} + \Pr{\left( E_2 \middle| A \right)} - \Pr{\left( E_1E_2 \middle| A \right)} \end{multline*} \] |
68 |
|
\[ \begin{multline*} \Pr{\left( A_1 \cdots A_n \right)}\\ =\Pr{\left( A_1 \right)} \Pr{\left( A_2 \middle| A_1 \right)} \Pr{\left( A_3 \middle| A_1A_2 \right)}\cdots\\ \cdots \Pr{\left( A_n \middle| A_1 \cdots A_{n-1} \right)} \end{multline*} \] |
|
$\textbf{Case n=2}$ \[ \begin{align*} \Pr{\left( AB \right)} &= \Pr{\left( B \right)} \Pr{\left( A \middle| B \right)}\\ &= \Pr{\left( A \right)} \Pr{\left( B \middle| A \right)}\\ \end{align*} \] $\textbf{Case n=3}$ \[ \begin{multline*} \Pr{\left( A_1A_2A_3 \right)}\\ = \Pr{\left( A_1 \right)} \Pr{\left( A_2 \middle| A_1 \right)} Pr{\left( A_3 \middle| A_1A_2 \right)} \end{multline*} \] | |
|
\begin{align*} \Pr{\left( A \right)} &= \sum_{i=1}^{n} {\Pr{\left( B_i \right)} \Pr{\left( A | B_i \right)}} \\ &= \Pr{\left( B_1 \right)} \Pr{\left( A | B_1 \right)}\\ &\qquad+ \cdots + \Pr{\left( B_n \right)} \Pr{\left(A | B_n \right)} \end{align*} | |
recall that $A=AB\cup AB^C.$ | \[ \begin{align*} \Pr{\left(A\right)} &= \Pr{\left( AB \cup A B^c \right)}\\ &= \Pr{\left( B \right)} \Pr{\left( A \middle| B \right)} + \Pr{\left( B^c \right)} \Pr{\left( A \middle| B^c \right)} \end{align*} \] | |
Holds for any collection of sets $S=\bigcup_{i=1}^{n}B_i, \Pr{\left(B_i\right)}>0,$ and $B_iB_j=\varnothing$ for all $i\neq j.$ | \[ \Pr{\left( A \right)} = \sum_{i=1}^{n}{\Pr{\left( B_i \right)} \Pr{\left( A \middle| B_i \right)}} \] | |
77 |
|
\[ \Pr{\left( B_j \middle| A \right)} = \frac{ \Pr{\left( B_j \right)} \Pr{\left( A \middle| B_j \right)} } { \sum_{i=1}^{n}{\Pr{\left(B_i\right)} \Pr{\left( A \middle| B_i \right)}} } \] |
Bayes’ Formula Special Case. | \[ \Pr{\left( A \right)} = \Pr{\left( A \middle| B\right)} \Pr{\left( B \right)} + \Pr{\left( A \middle| B^c \right)} \Pr{\left( B^c \right)} \] | |
86 |
$A_1,\ldots,A_n$ are
|
\[ \Pr{\left( A_{i_1} \cdots A_{i_k} \right)} =\Pr{\left( A_{i_1} \right)} \cdots \Pr{\left( A_{i_k} \right)} \] |
84 | If $A$ and $B$ are independent then so are $A$ and $B^c.$ | \[ \Pr{\left( AB^c \right)} =\Pr{\left( A \right)} \Pr{\left( B^c \right)} \] |
83 |
|
\[ \begin{align*} \Pr\left(AB\right) &=\Pr\left(A\right)\Pr\left(B\right)\\ \Pr\left( A\middle| B \right) &= \Pr\left( A \right)\\ \Pr\left( B\middle| A \right) &= \Pr\left( B \right) \end{align*} \] |
85 |
|
\[ \begin{align*} \Pr{\left( A \middle| B \right)} &= \Pr{\left( A \right)}\\ \Pr{\left( A \middle| C \right)} &= \Pr{\left( A \right)}\\ \Pr{\left(B\middle| C\right)} &=\Pr{\left(B\right)} \end{align*} \] |
85 |
|
\[ \begin{align*} \Pr{\left( ABC \right)} &=\Pr{\left( A \right)} \Pr{\left( B \right)} \Pr{\left( C \right)}\\ \Pr{\left( AB \right)} &= \Pr{\left( A \right)} \Pr{\left( B \right)}\\ \Pr{\left( AC \right)} &= \Pr{\left( A \right)} \Pr{\left( C \right)}\\ \Pr{\left( BC \right)} &= \Pr{\left( B \right)} \Pr{\left( C \right)}\\ \end{align*} \] |
75 |
|
\[ \frac{\Pr{\left( A \right)}} {\Pr{\left( A^c \right)}} = \frac{\Pr{\left( A \right)}}{1 - \Pr{\left( A \right)}} \] |
95 |
|
Page | Description |
---|---|
|
|
|
|
|
|
|
|
|