Chapter 4 Random Variables
Page | Description | Equation |
---|---|---|
127 |
|
\[ p\left(x\right)=\Pr{\left\{X=x\right\}} \] |
128 |
|
\[ \begin{array}{ll} p\left( x_i \right) \geq 0 & i = 1,2,3,\ldots\\ p\left(x\right)=0 & \mathrm{all\ other\ values\ of\ x}\\ \sum\limits_{ i = 1 }^{ \infty } p \left( x_i \right) = 1 \end{array} \] |
129 |
|
\[ F\left(a\right)=\sum_{x:x\le a} p\left(x\right) \] |
129 |
|
\[ p\left(a\right)=F\left(x_i\right)-F\left(x_{i-1}\right) \] |
130 | \[ \mu=E\left[X\right]=\sum_{x:p\left(x\right)>0} x p\left(x\right) \] | |
137 |
|
|
134 |
|
\[ E \left[ g \left( X \right) \right] = \sum_{ x : p \left( x \right) \gt 0} g \left( x \right) p \left( x \right) \] |
137 |
|
\[ E \left[ aX + b \right] = aE \left[ X \right] + b \] |
137 |
|
\[ E\left[X^n\right]=\sum_{x:p\left(x\right)>0}{x^np\left(x\right)} \] |
139 |
|
\[ \begin{array}{l} \Var\left(X\right) &= E\left[\left( X - \mu^2 \right)\right]\\ &= E\left[X^2\right] - \mu^2 \end{array} \] |
139 |
|
\[ SD\left(X\right)=\sqrt{\Var\left(X\right)} \] |
139 |
|
\[ p \left( i \right) = \left\{ \begin{array}{cl} 1-p & i=0\\ p & i=1 \end{array} \right. \] |
140 |
|
\[ p\left(i\right)=\sum_{i=0}^{n}{\binom{n}{i}p^i\left(1-p\right)^{n-i}} \] |
144 145 |
|
\[ E \left[ X \right] = np \] |
145 |
|
\[ \begin{array}{l} \Var\left(X\right) &= np \left(1 - p \right)\\ &= npq \end{array} \] |
147 |
|
\[ \begin{array}{l} n! &\approx n^{n+1/2} e^{-n} \sqrt{2 \pi}\\ &= n^n e^{-n} \sqrt{2 \pi n} \end{array} \] |
149 |
|
\[ p\left(k\right)=\frac{e^{-\lambda}\lambda^k}{k!},\ \lambda>0 \] |
|
\[ E\left[X\right]=\lambda \] | |
|
\[ \Var \left( X \right) = \lambda \] | |
4.7 |
|
\[ p\left(k\right)\approx\frac{e^{-\lambda}\lambda^k}{k!},\ \lambda \gt 0 \] |
|
\[ p\left(k\right)=\left(1-p\right)^{k-1}p,\quad k=1,2,3,\ldots \] | |
|
\[ E\left[X\right]=\frac{1}{p} \] | |
|
\[ p\left(k\right)=\binom{k-1}{r-1}p^r\left(1-p\right)^{k-r},\quad k\geq r \] | |
|
\[ E\left[X\right]=\frac{r}{p} \] | |
|
\[ \Var \left( X \right) = \frac{ r \left(1-p \right)} { p^2 } \] | |
|
||
|
||
4.9 |
|
|