Chapter 1 Complex Numbers
Page | Description | Equation |
---|---|---|
3 |
|
\[ z=a+bi \] |
3 |
|
\[ \left(a+bi\right)+\left(c+di\right)=\left(a+c\right)+\left(b+d\right)i \] |
3 |
|
\[ \left(a+bi\right)-\left(c+di\right)=\left(a-c\right)+\left(b-d\right)i \] |
3 |
|
\[ \left(a+bi\right)\left(c+di\right)=\left(ac-bd\right)+\left(bc+ad\right)i \] |
3 |
|
\[ \frac{a+bi}{c+di} =\frac{ac+bd}{c^2+d^2}+\frac{bc-ad}{c^2+d^2}i \] |
3 |
|
\[ \Re z_1z_2=ac-bd \] |
3 |
|
\[ \Im z_1z_2=bc+ad \] |
3 |
|
\[ \Re{\frac{z_1}{z_2}}=\frac{ac+bd}{c^2+d^2} \] |
3 |
|
\[ \Im{\frac{z_1}{z_2}}=\frac{bc-ad}{c^2+d^2} \] |
3 |
|
\[ -z=\left(-a,-b\right) \] |
3 |
|
\[ 0=\left(0,0\right) \] |
3 |
|
\[ \frac{1}{z}=\left(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2}\right) \] |
3 |
|
\[ 1 = (1, 0) \] |
5 |
|
\[ i^n=i^k=\left\{ \begin{matrix} 1k &=0\\ ik &=1\\ -1k &=2\\ -ik &=3 \end{matrix} \right. \] |
3 |
|
\[ \] |
3 |
|
\[ \] |
3 |
|
\[ \] |
3 |
|
\[ \] |
3 |
|
\[ \] |
4 |
|
\[ a=\Re z \] |
4 |
|
\[ b=\Im z \] |
4 |
|
\[ z=\Re z+i\Im z \] |
4 |
|
\[ z_1=z_2\\ \text{iff}\\ \Re z_1=\Re z_2\\ \text{and}\\ \Im z_1=\Im z_2 \] |
4 |
|
\[ z=bi \] |
8 |
|
\[ a+bi=\left(a,b\right) \] |
8 |
|
\[ \abs{z}=\sqrt{a^2+b^2} \] |
9 |
|
\[ \abs{i}=1 \] |
9 |
|
\[ \left|z_1-z_2\right|=\sqrt{\left(a_1-a_2\right)^2+\left(b_1-b_2\right)^2} \] |
10 |
|
\[ z=a-bi\Leftrightarrow z=a+bi \] |
10 |
|
\[ \overline{z_1+z_2}=\overline{z_1}+\overline{z_2} \] |
10 |
|
\[ \overline{z_1-z_2}=\overline{z_1}-\overline{z_2} \] |
11 |
|
\[ \overline{z_1z_2}=\overline{z_1}\ \overline{z_2} \] |
11 |
|
\[ \overline{\left(\frac{z_1}{z_2}\right)}=\frac{\overline{z_1}}{\overline{z_2}} \] |
11 |
|
\[ \overline{(\overline{z})}=z \] |
11 |
|
\[ \abs{z}=\abs{\overline{z}} \] |
11 |
|
\[ z\overline{z}=\abs{z}^2 \] |
11 |
|
\[ \sqrt{\left(z\overline{z}\right)}=\left(z\overline{z}\right)^{1/2}=z \] |
11 | This implies that the sum of a complex number and its conjugate $z+\overline{z}$ is real since $2\Re z$ is real. | \[ \Re{z}=\frac{z+\overline{z}}{2} \] |
11 | This implies that the difference of a complex number and its conjugate $z-z$ is pure imaginary since i 2 Im z is pure imaginary. | \[ \Im{z}=\frac{z-\overline{z}}{2i} \] |
12 |
|
\[ \frac{z_1}{z_2}=\frac{z_1\overline{z_2}}{z_2\overline{z_2}}=\frac{z_1\overline{z_2}}{\abs{z_2}^2} \] |
9 |
|
\[ \abs{z-z_0}=r \] |
9 |
|
\[ \abs{z}=r \] |
15 |
|
\[ \abs{z_1+z_2}\le\abs{z_1}+\abs{z_2} \] |
15 |
|
\[ z_1+z_2=\vect{z}_1+\vect{z}_2 \] |
14 |
|
\[ \norm{z}=\abs{z} \] |
17 |
|
\[ \begin{align*} \arg z &= \left\{ \theta: \cos\theta=\frac{x}{\abs{z}}, \sin\theta=\frac{y}{\abs{z}} \right\}\\ &= \left\{ \theta+2k\pi: \cos\theta=\frac{x}{\abs{z}}, \sin\theta=\frac{y}{\abs{z}},k\in\Z \right\}\\ &= \theta+2k\pi\quad(k=0,\pm1,\pm2,\ldots) \end{align*} \] |
18 |
|
\[ \left(\tau,\tau+2\pi\right] \] |
18 |
|
\[ \mathrm{arg}_\tau z=\theta\Leftrightarrow\theta\in\left(\tau,\tau+2\pi\right] \] |
18 |
|
\[ \Arg z=\mathrm{arg}_{-\pi}z=\theta \] |
18 |
|
\[ \cis\theta=\cos{\theta}+i\sin{\theta} \] |
18 |
|
\[ \left(r,\theta\right) = \left(\abs{z}, \arg z\right) \] |
18 |
|
\[ z=r\left(\cos{\theta}+\sin{\theta}\right) =r\cis\theta =\abs{z}\cis\arg z \] |
20 |
|
\[ z_1z_2=r_1r_2\mathrm{cis}\theta_1+\theta_2\\ \abs{z_1z_2}=\abs{z_1}\abs{z_2}\\ \arg z_1z_2=\arg z_1+\arg z_2 \] |
20 |
|
\[ \frac{z_1}{z_2}=r_1r_2\cis\theta_1-\theta_2\\ \abslr{\frac{z_1}{z_2}}=\frac{\abs{z_1}}{\abs{z_2}}\\ \arg\frac{z_1}{z_2}=\arg{z_1}-\arg z_2 \] |
21 |
|
\[ \arg\frac{z_1}{z_2}=\arg z_1-\arg z_2=\pm\frac{\pi}{2} \] |
27 |
|
\[ e^{iy}=\cos{y}+i\sin{y}=\cis y \] |
27 |
|
\[ \begin{align*} e^z &=e^{x+iy}=e^xe^{iy}\\ &=e^x\cis ye^x\left(\cos{y}+i\sin{y}\right) \end{align*} \] |
31 |
|
\[ e^z=e^{z+2\pi i} \] |
27 |
|
\[ e^{z_1}e^{z_2}=e^{z_1+z_2} \] |
27 |
|
\[ \frac{e^{z_1}}{e^{z_2}}=e^{z_1-z_2} \] |
29 |
|
\[ \left(e^z\right)^n=e^{nz} \] |
28 |
|
\[ z=re^{i\theta}=r\left(cos{\theta}+sin{\theta}\right) \] |
29 |
|
\[ z=re-iθ \] |
31 |
|
\[ \left|e^{x+iy}\right|=e^x \] |
11 28 |
|
\[ \cos{\theta} =\Re{e^{i\theta}} =\frac{e^{i\theta}+e^{-i\theta}}{2} \] |
21 18 |
|
\[ \sin{\theta} =\Im{e^{i\theta}} =\frac{e^{i\theta}-e^{-i\theta}}{2i} \] |
29 |
|
\[ z_1z_2=r_1r_2e^{i\left(\theta_1+\theta_2\right)} \] |
29 |
|
\[ \frac{z_1}{z_2}=\frac{r_1}{r_2}e^{i\left(\theta_1-\theta_2\right)} \] |
29 |
|
\[ \left(\cos{\theta}+i\sin{\theta}\right)^n =\cos{n}\theta+i\sin{n}\theta \] |
31 |
|
\[ \arg{e^{x+iy}}=y+2k\pi \] |
33 |
|
\[ z^n=r^ne^{in\theta} =r^n\left(\cos{n}\theta+i\sin{n}\theta\right) \] |
34 |
|
\[ 1^{1/m}=e^{i2k\pi/m} =\cos{\frac{2k\pi}{m}}+i\sin{\frac{2k\pi}{m}} \] |
34 |
|
\[ \begin{multline*} 1,\omega_m,\omega_m^2,\ldots,\omega_m^{m-1} \omega_m =e^{i2\pi/m}\\ =\cos{\frac{2\pi}{m}}+i\sin{\frac{2\pi}{m}} \end{multline*} \] |
36 |
|
\[ z^{1/m}=\sqrt[m]{\abs{z}}e^{i\left(\theta+2k\pi\right)/m} \] |
36 |
|
\[ z=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \] |
Notes |
|
Page | Notes |
---|---|
4 | There is no natural ordering of $\C.$ |
|
|
The definition of
|
|
|
|
|
|
|
|
15 |
|
34 | There are exactly $m$ distinct roots of a complex number $z.$ |
39 |
|
39 |
|
39 |
|
39 |
|
39 |
|
40 |
An open set $S$ is said to be
|
40 |
An open connected set is a
|
Procedure for Finding Complex Roots
According to the fundamental theorem of algebra,
the polynomial equation
\begin{equation}
\label{eq_ZetaPol}
\zeta^n=z
\end{equation}
in $\zeta$ has $n$ roots in the complex field.
That is, the complex number $z$ has exactly
Since an
If we number the $n$ roots, say from
We denote the set of
However, this equation does not tell us how to find $z^{1/n}$ when $z$ is known. That is, it does not tell us how to solve equation \eqref{eq_ZetaPol} for $\zeta.$ We obtain such a formula for $z^{1/n}$ from page 36. \begin{equation} \label{eq_SlnNthRoots} z^{1/n}=\left\{\sqrt[n]{\abs{z}}e^{i\left(\theta+2k\pi\right)/n}:\theta\in\arg{z},k=0,1,\ldots n-1\right\} \end{equation}
This theorem provides the value of $\zeta_k$
(the
In particular, from \eqref{eq_NthRoots} and \eqref{eq_SlnNthRoots} we see that: \begin{equation} \label{eq_RhoPhi} \rho=\sqrt[n]{\abs{z}} \text{ and } \varphi_k =\frac{\theta}{n} +\frac{2k\pi}{n}\left(\theta\in\arg{z}\right) \end{equation}
Another form
Note that $\rho$ and $\theta$ do not depend on $k$
so need to be computed only once. Also, it follows
from
Thus, adding $\phi_{k–1}$ to both sides
of this last equation gives us the
following recursive expression for $\phi k:$
\begin{equation}
\label{eq_PhiRec}
\varphi_k=\varphi_{k-1}+\frac{2\pi}{n}
\end{equation}
This equation means we can compute the first root
we want using
Thus, we can find the $\phi_k$ for each
It also may be helpful to recall from algebra the
conjugate pair theorem and two of its corollaries
(below), which apply when solving polynomial
equations with real coefficients over the complex
field.
Here is a general procedure for finding the
- \( \quad\abs{z}\\ \)
- \( \quad\rho=\sqrt[n]{\abs{z}}\\ \)
- \( \quad\theta=\Arg z\\ \)
- \( \quad\varphi_k=\frac{\theta}{n} +\frac{2k\pi}{n},\ (k=0,\ldots,n–1) \text{ or } \varphi_k=\varphi_{k-1}+\frac{2\pi}{n},\ (k=1,\ldots,n–1)\\ \)
- \( \quad\zeta_k=\sqrt[n]{\abs{z}}e^{i\varphi_k},\ (k=0,\ldots,n–1) \)
By raising the general element of the set $z^{1/n}$
defined in
However, how do we know that these are all the $n$ roots,
and that they are non-congruent roots? This question
is not really answered in the chapter and
See also page 36.
"Equivalently, we can form these roots by taking any
single one such as given in (3) and multiplying
by the