Chapter 2 Analytic Functions
Page | Description | Equation |
---|---|---|
54 |
|
\[ w=u\left(x,y\right)+iv\left(x,y\right) \] |
55 |
|
\[ f\left(z\right)=\frac{1}{z} \] |
58 |
|
\[ \lim\limits_{n\rightarrow\infty}z_n=z_0\\ \text{or}\\ z_n\rightarrow z_0\text{ as } n\rightarrow\infty \] |
59 |
|
\[ \lim\limits_{z\rightarrow z_0}f\left(z\right)=\omega_0\\ \text{or}\\ f\left(z\right)\rightarrow \omega_0\text{ as }z\rightarrow z_0 \] |
61 |
|
\[ \lim\limits_{z\rightarrow z_0}f\left(z\right) =f\left(z_0\right) \] |
61 |
|
\[ \begin{array}{l} \textbf{Sum Rule}\\ \lim\limits_{z\rightarrow z_0}\left(f\left(z\right)\pm g\left(z\right)\right)=A\pm B\\ \textbf{Product Rule}\\ \lim\limits_{z\rightarrow z_0}f\left(z\right)g\left(z\right)=AB\\ \textbf{Quotient Rule}\\ \lim\limits_{z\rightarrow z_0}\frac{f\left(z\right)}{g\left(z\right)} =\frac{A}{B},\ B\neq0 \end{array} \] |
61 |
|
\[ \begin{array}{l} \textbf{Sum Rule}\\ \lim\limits_{z\rightarrow z_0}\left(f\left(z\right)\pm g\left(z\right)\right)=A\pm B\\ \textbf{Product Rule}\\ \lim\limits_{z\rightarrow z_0}f\left(z\right)g\left(z\right)=AB\\ \textbf{Quotient Rule}\\ \lim\limits_{z\rightarrow z_0}\frac{f\left(z\right)}{g\left(z\right)} =\frac{A}{B},\ B\neq0 \end{array} \] |
61 | Polynomial functions in $z$ are continuous on the whole plane. | \[ P(z)=a_0+a_1z+a_2z^2+\cdots+a_n z^n\\ \Rightarrow \lim\limits_{z\rightarrow z_0}P(z)=P(z_0) \] |
62 | Rational functions in $z$ are continuous at each point in the plane where the denominator is not zero. | \[ f(z)=\frac{P(z)}{D(z)} =\frac{a_0+a_1z+a_2z^2+\cdots+a_n z^n} {b_0+b_1z+b_2z^2+\cdots+b_n z^n}\\ \text{and }D(z_0)\ne0\Rightarrow \lim\limits_{z\rightarrow z_0}f(z)=f(z_0), \] |
62 |
|
\[ \lim\limits_{n\rightarrow\infty}z_n=\infty\\ \text{or}\\ z_n\rightarrow\infty\text{ as } n\rightarrow\infty \] |
62 |
|
\[ \lim\limits_{z\rightarrow z_0}f\left(z\right)=\infty\\ \text{or}\\ f\left(z\right)\rightarrow \infty\text{ as }z\rightarrow z_0 \] |
67 |
Let $f$ be defined in a neighborhood of $z_0.$
Then the
|
\[ \frac{df}{dz}\equiv f'(z_0) :=\lim\limits_{\Delta z\rightarrow0} \frac{f(z_0+\Delta z)-f(z_0)} {\Delta z} \] |
68 69 |
|
\[ \begin{array}{l} \textbf{Power Rule}\\ \frac{d}{dz}z^n=nz^{n-1}\\ \textbf{Sum Rule}\\ \left(f\pm g\right)'\left(z\right) =f'\left(z\right)\pm g'\left(z\right)\\ \textbf{Constant Product Rule}\\ \left(cf\right)'\left(z\right)=cf'\left(z\right)\\ \textbf{Product Rule}\\ \left(fg\right)'\left(z\right) =f'\left(z\right)g\left(z\right)+f\left(z\right)g'\left(z\right)\\ \textbf{Quotient Rule}\\ \left(\frac{f}{g}\right)'\left(z\right) =\frac{g\left(z\right)f'\left(z\right)-f\left(z\right)g'\left(z\right)} {g\left(z\right)^2},\ g\left(z\right)\neq0\\ \end{array} \] |
69 |
|
\[ \frac{d}{dz}f\left(g\left(z\right)\right)=f'\left(g\left(z\right)\right)g'\left(z\right) \] |
73 |
|
\[ \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \] |
73 |
|
\[ f'\left(z_0\right)=\frac{\partial u}{\partial x}\left(x_0,y_0\right)+i\frac{\partial v}{\partial x}\left(x_0,y_0\right) \] |
78 |
|
\[ J(x_0,y_0)= \begin{vmatrix} \frac{\partial u}{\partial x} &\frac{\partial u}{\partial y}\\ \frac{\partial v}{\partial x} &\frac{\partial v}{\partial y}\\ \end{vmatrix} \] |
79 |
|
\[ \nabla^2\varphi=\frac{\partial^2\varphi}{\partial x^2}+\frac{\partial^2\varphi}{\partial y^2}=0 \] |
Notes |
|
Page | Notes |
---|---|
54 |
|
53 |
Definitions of
|
57 58 |
|
61 | polynomial and rational functions are continuous. |
62 |
|
62 |
|
69 | Differentiability implies continuity. |
70 |
A complex-valued function $f(z)$ is said to be
|
70 |
$f(z)$ is
|
70 |
A point where $f$ is not analytic but which is the
limit of points where $f$ is analytic is known as
|
70 |
If $f(z)$ is analytic on the whole complex plane,
then it is said to be
|
70 |
All analytic functions can be written in terms
of $z$ alone (no
|
69 | For purposes of differentiation, polynomial and rational functions in $z$ can be treated as if $z$ were a real variable. |
73 |
If $f$ is analytic in an open set $G,$ then
|
74 |
If the first partial derivatives of $f$ are
continuous and satisfy the Cauchy-Riemann
equations at all points of $G,$ then $f$
is
|
77 | An analytic function $f$ must be constant when any one of the following conditions hold in a domain $D.$ |
76 | If $f(z)$ is analytic in a domain $D$ and if $f'\left(z\right)=0$ everywhere in $D,$ then $f(z)$ is constant in $D.$ |
79 |
A real valued function $\varphi\left(x,y\right)$ is
said to be
|
79 |
If $f\left(z\right)=u\left(x,y\right)+iv\left(x,y\right)$
is analytic in a domain $D,$ then each of the functions
$u\left(x,y\right)$ and $v\left(x,y\right)$ is harmonic
in $D$ and $v$ is called
|
79 | If $u\left(x,y\right)$ is a harmonic function in an open disk $D,$ then there is a function $v\left(x,y\right)$ so that $u\left(x,y\right)+iv\left(x,y\right)$ is analytic in $D.$ |
81 |
Finding a harmonic conjugate in an arbitrary domain
may not always be possible. See problem 21 for an
example, when the domain is
|
79 |
|
81 |
|
83 | The level curves of the real and imaginary parts of an analytic function $f$ will always intersect at right angles, unless $f'\left(z\right)=0$ at the point of intersection. Thus, level curves of harmonic functions and their harmonic conjugates intersect at right angles. |