99 |
polynomial function
|
\[
p_n\left(z\right)=a_0+a_1z+a_2z^2+\cdots+a_nz^n
\]
|
99 |
rational function
|
\[
R_{m,n}\left(z\right)
=\frac{a_0+a_1z+a_2z^2+\cdots+a_mz^m}
{b_0+b_1z+b_2z^2+\cdots+b_nz^n}
\]
|
103 |
Taylor form of a polynomial centered at $z_0.$
Called the
Maclaurin form
when $z_0=0.$
|
\[
p_n\left(z\right)
=\sum_{k=0}^{n}{\frac{p_n^{\left(k\right)}\left(z_0\right)}
{k!}\left(z-z_0\right)^k}
\]
|
111 |
exponential function
|
\[
e^z=e^x\left(\cos{y}+i\sin{y}\right)
\]
|
111 |
derivative of the exponential function
|
\[
\frac{d}{dz}e^z=e^z
\]
|
111 |
modulus of the exponential function
|
\[
\abs{e^z}=e^x
\]
|
111 |
argument of the exponential function
|
\[
\arg{e^z}=y+2k\pi k=0,\pm1,\pm2,\ldots
\]
|
111 |
theorem
|
\[
e^z=1\Leftrightarrow z=2k\pi i
\]
|
111 |
period of the complex exponential function.
periodic with period $2\pi i.$
|
\[
e^{z_1}=e^{z_2}\Leftrightarrow z_1=z_2+2k\pi i
\]
|
113 |
definition of $\cos z$
|
\[
\cos{z}=\frac{e^{iz}+e^{-iz}}{2}
\]
|
113 |
definition of $\sin z$
|
\[
\sin{z}=\frac{e^{iz}-e^{-iz}}{2i}
\]
|
113 |
derivative of $\sin z.$
|
\[
\frac{d}{dz}\sin{z}=\cos{z}
\]
|
113 |
derivative of $\cos z.$
|
\[
\frac{d}{dz}\cos{z}=-\sin{z}
\]
|
114 |
the only
zeros of $\cos$
are its real zeros.
|
\[
\cos{z}=0\Leftrightarrow z=\frac{\pi}{2}+k\pi
\]
|
114 |
the only
zeros of $\sin$
are its real zeros.
|
\[
\sin{z}=0\Leftrightarrow z=k\pi
\]
|
114 |
definition of $\tan z$
|
\[
\tan{z}=\frac{\sin{z}}{\cos{z}}
\]
|
114 |
definition of $\cot z$
|
\[
\cot{z}=\frac{\cos{z}}{\sin{z}}
\]
|
114 |
definition of $\sec z$
|
\[
\sec{z}=\frac{1}{\cos{z}}
\]
|
114 |
definition of $\csc z$
|
\[
\csc{z}=\frac{1}{\sin{z}}
\]
|
114 |
derivative of $\tan z$
|
\[
\frac{d}{dz}\tan{z}={\sec}^2{z}
\]
|
114 |
derivative of $\cot z$
|
\[
\frac{d}{dz}\cot{z}=-\csc^2{z}
\]
|
114 |
derivative of $\csc z$
|
\[
\frac{d}{dz}\csc{z}=-\csc{z}\cot{z}
\]
|
114 |
derivative of $\sinh z$
|
\[
\sinh{z}=\frac{e^z-e^{-z}}{2}
\]
|
|
derivative of $\cosh z$
|
\[
\cosh{z}=\frac{e^z+e^{-z}}{2}
\]
|
131 |
$n$ an integer
|
\[
z^n=\left(e^{\log{z}}\right)^n=e^{n\log{z}}
\]
|
132 |
$\alpha=$ complex
constant, $z\ne0$
|
\[
z^\alpha=\left(e^{\log{z}}\right)^\alpha
=e^{\alpha\log{z}}\left(z\neq0\right)
\]
|