166 |
parametrization of the circle
$\abs{z-z_0}=r,$ i.e. the circle centered
at $z0$ with radius $r$
|
\[
z\left(t\right)=z_0+re^{it},0\le t\le2\pi
\]
|
166 |
$C_r=$ circle $\abs{z-z_0}=r$
traversed once in the counter-clockwise direction
|
\[
\int_{C_r}{\left(z-z_0\right)^n\dz}
= \left\{
\begin{matrix}
0 &n\neq-1\\
2\pi i &n=-1
\end{matrix}
\right.
\]
|
186 |
Deformation Invariance theorem.
theorem 8.
|
\[
\int_{\Gamma_0} f\left(z\right)\dz
=\int_{\Gamma_1} f\left(z\right)\dz
\]
|
187 |
Cauchy's integral theorem.
theorem 9.
$f$ is analytic in a simply connected
domain $\C$ and $\Gamma$ is any loop
(closed contour) in $D.$
|
\[
\int_{\Gamma} f\left(z\right)dz=0
\]
|
|
Cauchy's integral formula.
Holds if $f$ is analytic inside and on the simple
closed positively oriented contour $\Gamma$
and $z_0$ is any point inside $\Gamma.$
|
\[
f\left(z_0\right)
=\frac{1}{2\pi i}\int_{\Gamma}
{\frac{f\left(z\right)}{\left(z-z_0\right)}\dz}
\]
|
211 |
generalized Cauchy integral formula.
Holds if $f$ is analytic inside and
on the simple closed positively
oriented contour $\Gamma$
and $z$ is any point inside $\Gamma.$
|
\[
f^{\left(n\right)}\left(z\right)
=\frac{n!}{2\pi i}\int_{\Gamma}
{\frac{f\left(\zeta\right)}
{\left(\zeta-z\right)^{n+1}}\,d\zeta},
\left(n=0,1,2,\ldots\right)
\]
|
211 |
generalized Cauchy integral formula (equivalent form).
Same conditions except now $z_0$ is any point inside
$\Gamma.$
|
\[
f^{\left(n\right)}\left(z_0\right)
=\frac{n!}{2\pi i}
\int_{\Gamma}
{\frac{f\left(z\right)}{\left(z-z_0\right)^{n+1}}\dz},
\left(n=0,1,2,\ldots\right)
\]
|
211 |
generalized Cauchy integral formula (equivalent form).
Same conditions as previous.
|
\[
\frac{2\pi i f^{\left(m-1\right)}\left(z_0\right)}{\left(m-1\right)!}
=\int_{\Gamma}
{\frac{f\left(z\right)}{\left(z-z_0\right)^m}\dz},
\left(m=1,2,3,\ldots\right)
\]
|
215 |
Cauchy estimates for the derivatives of a function $f.$
Holds if $f$ is analytic inside and on a circle $C_R$ of
radius $R$ centered about $z_0,$ and
$\abs{f\left(z\right)}\le M$
for all $z$ on $C_R.$
|
\[
\abs{f^{\left(n\right)}\left(z_0\right)}
\le\frac{n!M}{R^n},
\left(n=1,2,3,\ldots\right)
\]
|
216 |
mean value property
|
\[
f\left(z_0\right)
=\frac{1}{2\pi}
\int_{0}^{2\pi}f\left(z_0+Re^{it}\right)\dt
\]
|