Chapter 4 Motion in Two Dimensions
Page | Description | Equation |
---|---|---|
77 |
|
\[ \Delta\vect{r}=\vect{r}_f-\vect{r}_i \] |
77 |
|
\[ \overline{\vect{v}}=\frac{\Delta\vect{r}}{\Delta t} \] |
78 |
|
\[ \vect{v}=\lim\limits_{\Delta t\rightarrow0}{\frac{\Delta\vect{r}}{\Delta t}=\frac{d\vect{r}}{dt}} \] |
79 |
|
\[ \overline{\vect{a}}=\frac{\Delta\vect{v}}{\Delta t}=\frac{\vect{v}_f-\vect{v}_i}{t_f-t_i} \] |
79 |
|
\[ \vect{a}=\lim\limits_{\Delta t\rightarrow0}{\frac{\Delta\vect{v}}{\Delta t}=\frac{d\vect{v}}{dt}} \] |
79 |
|
\[ \vect{r}=x\vect{i}+y\vect{j} \] |
79 |
|
\[ \vect{v}=v_x\vect{i}+v_y\vect{j} \] |
80 |
|
\[ \begin{align*} \vect{v}_f &=\vect{v}_i+\vect{a}t\\ v_{x_f} &=v_{x_i}+a_xt\\ v_{y_f} &=v_{y_i}+a_yt \end{align*} \] |
80 |
|
\[ \Delta\vect{r}=\overline{\vect{v}}t=\frac{1}{2}\left(\vect{v}_i+\vect{v}_f\right)t \] |
80 |
|
\[ \Delta\vect{r}=\vect{v}t+\frac{1}{2}\vect{a}t^2 \] |
80 |
|
\[ \vect{v}_f^2-\vect{v}_i^2=2\vect{a}\Delta\vect{r} \] |
82 |
$v_i=\text{initial speed}$ $\theta_i=\text{launch angle}.$ |
\[ \vect{v}_i=v_i\cos{\theta_i}\,\vect{i}+v_i\sin{\theta_i}\,\vect{j} \] |
83 |
|
\[ \vect{r}=\vect{v}_it+\frac{1}{2}\vect{g}t^2 \] |
85 |
|
\[ t_{\mathrm{peak}}=\frac{v_i\sin{\theta_i}}{g} \] |
85 |
|
\[ h=\frac{v_i^2\sin^2{\theta_i}}{2g} \] |
85 |
|
\[ R=\frac{v_i^2\sin{2\theta_i}}{g} \] |
|
\[ a_t=\frac{d\left|v\right|}{dt}=\frac{dv}{dt} \] | |
|
\[ a_r=\frac{v^2}{r}\ \ \left[\frac{\mathrm{L\ }}{\ \mathrm{T}^2}\right] \] | |
94 |
|
\[ \begin{align*} \vect{a} &=\vect{a}_t+\vect{a}_r\\ &=\frac{dv}{dt}\hat{\vect{\theta}}-\frac{v^2}{r}\hat{\vect{r}} \end{align*} \] |
|
\[ a=\sqrt{a_r^2+a_t^2} \] | |
|
\[ \phi=\tan^{-1}{\frac{a_t}{a_r}} \] | |
|
\[ \vect{r}^\prime=\vect{r}-\vect{v}_0t \] | |
|
\[ \vect{v}^\prime=\vect{v}-\vect{v}_0 \] | |
|
\[ \vect{a}^\prime=\vect{a} \] | |
|
\[ \] | |
|
\[ \] | |
|
\[ \] |