Chapter 11 Rolling Motion and Angular Momentum
Page | Description | Equation |
---|---|---|
328 |
|
\[ v_{\mathrm{CM}}=R\omega \] |
329 |
|
\[ a_{\mathrm{CM}}=R\alpha \] |
330 |
|
\[ K=\frac{1}{2}I_{\mathrm{CM}}\omega^2+\frac{1}{2}Mv_{\mathrm{CM}}^2 \] |
332 |
|
\[ \vect{\tau}=\vect{r}\times\vect{F} \] |
333 |
|
\[ \vect{A}\times\vect{B}=AB\sin{\theta}\,\vect{u},\\ \text{ where } 0\le\theta\le\pi \] |
333 |
|
\[ \left|\vect{A}\times\vect{B}\right|=AB\sin{\theta} \] |
333 |
|
\[ \vect{A}\times\vect{B}=-\vect{B}\times\vect{A} \] |
333 |
|
\[ \vect{A}\times\vect{B}=\vect{0},\\ \text{ if }\ \theta=180^\circ \text{ or }\ \theta=0^\circ \] |
333 |
|
\[ \vect{A}\times\vect{A}=\vect{0} \] |
333 |
|
\[ \left|\vect{A}\times\vect{B}\right|=AB,\\ \text{ if }\ \theta=90^\circ \] |
333 |
|
\[ \vect{A}\times\left(\vect{B}+\vect{C}\right)=\vect{A}\times\vect{B}+\vect{A}\times\vect{C} \] |
333 |
|
\[ \frac{d}{dt}\left(\vect{A}\times\vect{B}\right)=\vect{A}\times\frac{d\vect{B}}{dt}+\frac{d\vect{A}}{dt}\times\vect{B} \] |
334 |
|
\[ \vect{i}\times\vect{i}=\vect{j}\times\vect{j}=\vect{k}\times\vect{k}=\vect{0} \] |
334 |
|
\[ \vect{i}\times\vect{j}=-\vect{j}\times\vect{i}=\vect{k} \] |
334 |
|
\[ \vect{j}\times\vect{k}=-\vect{k}\times\vect{j}=\vect{i} \] |
334 |
|
\[ \vect{k}\times\vect{i}=-\vect{i}\times\vect{k}=\vect{j} \] |
334 |
|
\[ \vect{A}\times\left(-\vect{B}\right)=-\vect{A}\times\vect{B} \] |
334 |
|
\[ \begin{align*} \vect{A}\times\vect{B} &=\begin{vmatrix} \vect{i}&\vect{j}&\vect{k}\\ A_x&A_y&A_z\\ B_x&B_y&B_z \end{vmatrix}\\ &=\vect{i} \begin{vmatrix} A_y&A_z\\ B_y&B_z \end{vmatrix} -\vect{j} \begin{vmatrix} A_x&A_z\\ B_x&B_z\\ \end{vmatrix} +\vect{k} \begin{vmatrix} A_x&A_y\\ B_x&B_y\\ \end{vmatrix}\\ & \begin{split} =\left(A_yB_z-A_zB_y\right)\vect{i} &-\left(A_xB_z-A_zB_x\right)\vect{j}\\ &+\left(A_xB_y-A_yB_x\right)\vect{k} \end{split} \end{align*} \] |
335 |
|
\[ \vect{L}\equiv\vect{r}\times\vect{p} \] |
335 |
|
\[ \sum\vect{\tau}=\frac{d\vect{L}}{dt} \] |
336 |
|
\[ \vect{L}=\sum_{i}\vect{L}_i \] |
338 |
|
\[ L_z=I\omega \] |
338 |
|
\[ \sum\tau_{\mathrm{ext}}=\frac{d\vect{L}}{dt}=I\alpha \] |
341 |
|
\[ I_i\omega_i=I_f\omega_f=\mathrm{constant} \] |
Notes
The total angular momentum of a system can vary with time only if a net external torque is acting on the system.