Page Description Equation
373 elastic modulus. there are three main elastic moduli: Young's, Shear, which measures the resistance to motion of the planes of a solid sliding past each other, bulk. \[ \mathrm{elastic\ modulus}\equiv\frac{\mathrm{stress}}{\mathrm{strain}} \]
373 elastic limit
373 tensile stress \[ \mathrm{tensile\ stress}=\frac{F}{A} \]
373 tensile strain \[ \mathrm{tensile\ strain}=\frac{\Delta L}{L_i} \]
374 shear stress, where $F=$ tangential force \[ \mathrm{shear\ stress}=\frac{\Delta x}{h} \]
374 shear strain \[ \mathrm{shear\ strain}=\frac{\Delta x}{h} \]
374 volume stress, $F=$ normal force \[ \mathrm{volume\ stress}=\frac{F}{A}=P \]
374 volume strain \[ \mathrm{volume\ strain}=\frac{\Delta V}{V_i} \]
373 Young's (tensile) modulus. elastic modulus that measures resistance of a solid to a change in its length \[ Y=\frac{\mathrm{tensile\ stress}}{\mathrm{tensile\ strain}}=\frac{F/A}{\Delta L/L_i} \]
374 shear modulus. elastic modulus that measures resistance to motion of the planes of a solid sliding past each other. \[ S=\frac{\mathrm{shear\ stress}}{\mathrm{shear\ strain}}=\frac{F/A}{\Delta x /h} \]
374 bulk modulus. elastic modulus which measures the resistance of solids or liquids to changes in their volume. \[ \begin{align*} B &\equiv\frac{\mathrm{volume\ stress}}{\mathrm{volume\ strain}}\\ &=-\frac{\Delta F / A}{\Delta V / V_i} =-\frac{\Delta P}{\Delta V / V_i} \end{align*} \]

Notes

Page Notes
374 Ductile
374 Brittle